Bio-Based Polymer Developments from Tall Oil Fatty Acids by Exploiting Michael Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solid Polymer Development
2.3. Characterization Methods
3. Results and Discussion
3.1. FTIR Analysis of Monoliths
3.2. DSC Analysis of Monoliths
3.3. TGA Analysis of Monoliths
3.4. DMA Analysis of Monoliths
3.5. Tensile Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. The European Green Deal; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Rosenboom, J.G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Cifarelli, A.; Boggioni, L.; Vignali, A.; Tritto, I.; Bertini, F.; Losio, S. Flexible polyurethane foams from epoxidized vegetable oils and a bio-based diisocyanate. Polymers 2021, 13, 612. [Google Scholar] [CrossRef] [PubMed]
- Sittinun, A.; Pisitsak, P.; Manuspiya, H.; Thiangtham, S.; Chang, Y.H.; Ummartyotin, S. Utilization of Palm Olein-Based Polyol for Polyurethane Foam Sponge Synthesis: Potential as a Sorbent Material. J. Polym. Environ. 2020, 28, 3181–3191. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, C.; Kessler, M.R. Polyols and polyurethanes prepared from epoxidized soybean oil ring-opened by polyhydroxy fatty acids with varying oh numbers. J. Appl. Polym. Sci. 2015, 132, 41213. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, J.J.; Zhang, J.X. Polyols prepared from ring-opening epoxidized soybean oil by a castor oil-based fatty diol. Int. J. Polym. Sci. 2015, 2015, 529235. [Google Scholar] [CrossRef]
- Coman, A.E.; Peyrton, J.; Hubca, G.; Sarbu, A.; Gabor, A.R.; Nicolae, C.A.; Iordache, T.V.; Averous, L. Synthesis and characterization of renewable polyurethane foams using different biobased polyols from olive oil. Eur. Polym. J. 2021, 149, 110363. [Google Scholar] [CrossRef]
- Liao, Y.-H.; Su, Y.-L.; Chen, Y.-C. The Influence of Neem Oil and Its Glyceride on the Structure and Characterization of Castor Oil-Based Polyurethane Foam. Polymers 2021, 13, 2020. [Google Scholar] [CrossRef] [PubMed]
- Abolins, A.; Pomilovskis, R.; Vanags, E.; Mierina, I.; Michalowski, S.; Fridrihsone, A.; Kirpluks, M. Impact of different epoxidation approaches of tall oil fatty acids on rigid polyurethane foam thermal insulation. Materials 2021, 14, 894. [Google Scholar] [CrossRef] [PubMed]
- Dechent, S.E.; Kleij, A.W.; Luinstra, G.A. Fully bio-derived CO2 polymers for non-isocyanate based polyurethane synthesis. Green Chem. 2020, 22, 969–978. [Google Scholar] [CrossRef]
- Sternberg, J.; Pilla, S. Materials for the biorefinery: High bio-content, shape memory Kraft lignin-derived non-isocyanate polyurethane foams using a non-toxic protocol. Green Chem. 2020, 22, 6922–6935. [Google Scholar] [CrossRef]
- Lindsay, C.D.; Timperley, C.M. TRPA1 and issues relating to animal model selection for extrapolating toxicity data to humans. Hum. Exp. Toxicol. 2020, 39, 14–36. [Google Scholar] [CrossRef]
- Kathalewar, M.; Sabnis, A.; D’Mello, D. Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur. Polym. J. 2014, 57, 99–108. [Google Scholar] [CrossRef]
- Kathalewar, M.S.; Joshi, P.B.; Sabnis, A.S.; Malshe, V.C. Non-isocyanate polyurethanes: From chemistry to applications. RSC Adv. 2013, 3, 4110–4129. [Google Scholar] [CrossRef]
- Bähr, M.; Xie, W.; Łukaszewska, I.; Hebda, E.; Pielichowski, K. Recent advances in fabrication of non-isocyanate polyurethane-based composite materials. Materials 2021, 14, 3497. [Google Scholar] [CrossRef]
- Gomez-Lopez, A.; Elizalde, F.; Sardon, H. Trends in non-isocyanate polyurethane (NIPU) development. Chem. Commun. 2021, 57, 12254–12265. [Google Scholar] [CrossRef]
- Omer, R.A.; Hama, J.R.; Rashid, R.S.M. The Effect of Dextran Molecular Weight on the Biodegradable Hydrogel with Oil, Synthesized by the Michael Addition Reaction. Adv. Polym. Technol. 2015, 36, 120–127. [Google Scholar] [CrossRef]
- Mather, B.D.; Viswanathan, K.; Miller, K.M.; Long, T.E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 2006, 31, 487–531. [Google Scholar] [CrossRef]
- Noordover, B.; Liu, W.; McCracken, E.; DeGooyer, B.; Brinkhuis, R.; Lunzer, F. Michael addition curable coatings from renewable resources with enhanced adhesion performance. J. Coat. Technol. Res. 2020, 17, 1123–1130. [Google Scholar] [CrossRef]
- Sonnenschein, M.F.; Werness, J.B.; Patankar, K.A.; Jin, X.; Larive, M.Z. From rigid and flexible foams to elastomers via Michael addition chemistry. Polymer 2016, 106, 128–139. [Google Scholar] [CrossRef]
- Yang, X.; Liu, H.; Qian, L.; Meng, Q.; Wu, H.; Li, Z.; Zhou, H. Surface functionalization of cellulose fibers via aza-Michael addition for CO2-assisted water remediation. Appl. Surf. Sci. 2021, 554, 149593. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Shaikh, A.A.; Ahn, W.S. Heterogeneous Aza-Michael Addition Reaction by the Copper-Based Metal–Organic Framework (CuBTC). Catal. Lett. 2021, 151, 2011–2018. [Google Scholar] [CrossRef]
- Su, G.; Thomson, C.J.; Yamazaki, K.; Rozsar, D.; Christensen, K.E.; Hamlin, T.A.; Dixon, D.J. A bifunctional iminophosphorane squaramide catalyzed enantioselective synthesis of hydroquinazolines: Via intramolecular aza-Michael reaction to α,β-unsaturated esters. Chem. Sci. 2021, 12, 6064–6072. [Google Scholar] [CrossRef] [PubMed]
- Mushtaque, M.; Avecilla, F.; Ahmad, I.; Alharbi, A.M.; Khan, P.; Ahamad, S.; Hassan, M.I. 5-Fluorouracil (5-FU)-based Aza-Michael addition product: A selective carbonic anhydrase IX inhibitor. J. Mol. Struct. 2021, 1231, 129977. [Google Scholar] [CrossRef]
- Alaneed, R.; Golitsyn, Y.; Hauenschild, T.; Pietzsch, M.; Reichert, D.; Kressler, J. Network formation by aza-Michael addition of primary amines to vinyl end groups of enzymatically synthesized poly (glycerol adipate). Polym. Int. 2021, 70, 135–144. [Google Scholar] [CrossRef]
- Gunay, U.S.; Cetin, M.; Daglar, O.; Hizal, G.; Tunca, U.; Durmaz, H. Ultrafast and efficient aza- and thiol-Michael reactions on a polyester scaffold with internal electron deficient triple bonds. Polym. Chem. 2018, 9, 3037–3054. [Google Scholar] [CrossRef]
- Li, Q.F.; Chu, S.; Li, E.; Li, M.; Wang, J.T.; Wang, Z. Lanthanide-based hydrogels with adjustable luminescent properties synthesized by thiol-Michael addition. Dye. Pigment. 2020, 174, 108091. [Google Scholar] [CrossRef]
- Chen, J.; Ma, X.; Edgar, K.J. A Versatile Method for Preparing Polysaccharide Conjugates via Thiol-Michael Addition. Polymers 2021, 13, 1905. [Google Scholar] [CrossRef]
- Cespedes, S.; Hand, R.A.; Chmel, N.; Moad, G.; Keddie, D.J.; Schiller, T.L. Enhanced properties of well-defined polymer networks prepared by a sequential thiol-Michael-radical thiol-ene (STMRT) strategy. Eur. Polym. J. 2021, 151, 110440. [Google Scholar] [CrossRef]
- Piñeiro-García, A.; Vega-Díaz, S.M.; Tristán, F.; Meneses-Rodríguez, D.; Labrada-Delgado, G.J.; Semetey, V. New insights in the chemical functionalization of graphene oxide by thiol-ene Michael addition reaction. FlatChem 2021, 26, 100230. [Google Scholar] [CrossRef]
- Lenardão, E.J.; Trecha, D.O.; Ferreira, P.d.C.; Jacob, R.G.; Perin, G. Green Michael Addition of Thiols to Electron Deficient Alkenes using KF/Alumina and Recyclable Solvent or Solvent-free Conditions. J. Braz. Chem. Soc. 2009, 20, 93–99. [Google Scholar] [CrossRef]
- Chatani, S.; Nair, D.P.; Bowman, C.N. Relative reactivity and selectivity of vinyl sulfones and acrylates towards the thiol-Michael addition reaction and polymerization. Polym. Chem. 2013, 4, 1048–1055. [Google Scholar] [CrossRef]
- Liu, N. New Polymers Synthesis by Organocatalyzed Step-Growth Polymerization of Aldehydic Monomers: Polyaldols, Linear Polybenzoin and Hyperbranched Polyacetals. Ph.D. Thesis, Université Sciences et Technologies-Bordeaux I, Gradignan, France, 2014. [Google Scholar]
- Williams, S.R.; Miller, K.M.; Long, T.E. Michael addition reaction kinetics of acetoacetates and acrylates for the formation of polymeric networks. Prog. React. Kinet. Mech. 2007, 32, 165–194. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, Y.L.; Du, Y.; Tang, M.; Jiang, L.; Huang, W.; Yang, H.; Xue, X.; Jiang, B. Preparation of hyperbranched polymers by oxa-Michael addition polymerization. Polym. Chem. 2020, 11, 1298–1306. [Google Scholar] [CrossRef]
- Nising, C.F.; Bräse, S. The oxa-Michael reaction: From recent developments to applications in natural product synthesis. Chem. Soc. Rev. 2008, 37, 1218–1228. [Google Scholar] [CrossRef]
- González, G.; Fernández-Francos, X.; Serra, À.; Sangermano, M.; Ramis, X. Environmentally-friendly processing of thermosets by two-stage sequential aza-Michael addition and free-radical polymerization of amine-acrylate mixtures. Polym. Chem. 2015, 6, 6987–6997. [Google Scholar] [CrossRef]
- Farmer, T.J.; Comerford, J.W.; Pellis, A.; Robert, T. Post-polymerization modification of bio-based polymers: Maximizing the high functionality of polymers derived from biomass. Polym. Int. 2018, 67, 775–789. [Google Scholar] [CrossRef]
- Cao, Z.; Gao, F.; Zhao, J.; Wei, X.; Cheng, Q.; Zhong, J.; Lin, C.; Shu, J.; Fu, C.; Shen, L. Bio-based coating materials derived from acetoacetylated soybean oil and aromatic dicarboxaldehydes. Polymers 2019, 11, 1809. [Google Scholar] [CrossRef]
- He, X.; Zhong, J.; Cao, Z.; Wang, J.; Gao, F.; Xu, D.; Shen, L. An exploration of the Knoevenagel condensation to create ambient curable coating materials based on acetoacetylated castor oil. Prog. Org. Coat. 2019, 129, 21–25. [Google Scholar] [CrossRef]
- Trevino, A.S.; Trumbo, D.L. Acetoacetylated castor oil in coatings applications. Prog. Org. Coat. 2002, 44, 49–54. [Google Scholar] [CrossRef]
- Xu, D.; Cao, Z.; Wang, T.; Zhong, J.; Zhao, J.; Gao, F.; Luo, X.; Fang, Z.; Cao, J.; Xu, S.; et al. An ambient-cured coating film obtained via a Knoevenagel and Michael addition reactions based on modified acetoacetylated castor oil prepared by a thiol-ene coupling reaction. Prog. Org. Coat. 2019, 135, 510–516. [Google Scholar] [CrossRef]
- Zuo, H.; Cao, Z.; Shu, J.; Xu, D.; Zhong, J.; Zhao, J.; Wang, T.; Chen, Y.; Gao, F.; Shen, L. Effect of structure on the properties of ambient-cured coating films prepared via a Michael addition reaction based on an acetoacetate-modified castor oil prepared by thiol-ene coupling. Prog. Org. Coat. 2019, 135, 27–33. [Google Scholar] [CrossRef]
- Naga, N.; Satoh, M.; Magara, T.; Ahmed, K.; Nakano, T. Synthesis of gels by means of Michael addition reaction of multi-functional acetoacetate and diacrylate compounds and their application to ionic conductive gels. J. Appl. Polym. Sci. 2021, 59, 2129–2139. [Google Scholar] [CrossRef]
- Park, S.-H.; Alammar, A.; Fulop, Z.; Pulido, B.A.; Nunes, S.P.; Szekely, G. Hydrophobic thin film composite nanofiltration membranes derived solely from sustainable sources. Green Chem. 2021, 23, 1175–1184. [Google Scholar] [CrossRef]
- Sinha, J.; Soars, S.; Bowman, C.N. Enamine Organocatalysts for the Thiol-Michael Addition Reaction and Cross-Linking Polymerizations. Macromolecules 2021, 54, 1693–1701. [Google Scholar] [CrossRef]
- Williams, S.R.; Mather, B.D.; Miller, K.M.; Long, T.E. Novel michael addition networks containing urethane hydrogen bonding. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 4118–4128. [Google Scholar] [CrossRef]
- Bureau, I. Functionalized Oligomers, WO 2014/052081 A2, 4 April 2014.
- Ozturk, G.; Long, T.E. Michael addition for crosslinking of poly(caprolactone)s. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 5437–5447. [Google Scholar] [CrossRef]
- Balotupi, T.; Lanta, T.; Rzwpk, D.A.N.P.K. Non-Isocyanate Rigid Polymer Foams By Carbon-Michael Addition, and Foaming Process. WO 2013/101682 Al, 4 July 2013. [Google Scholar]
- Zhaoo, M.Y.; Hsu, C.-P.; Voeks, S.L.; Landtiser, R. Acetoacetyl Thermosetting Resin for Zero Voc Gel Coat. WO 2013/132077, 12 September 2013. [Google Scholar]
- Kim, T.H.; Kim, M.; Lee, W.; Kim, H.G.; Lim, C.S.; Seo, B. Synthesis and characterization of a polyurethane phase separated to nano size in an epoxy polymer. Coatings 2019, 9, 319. [Google Scholar] [CrossRef]
- Jena, K.K.; Raju, K.V.S.N. Synthesis and characterization of hyperbranched polyurethane hybrids using tetraethoxysilane (TEOS) as cross-linker. Ind. Eng. Chem. Res. 2008, 47, 9214–9224. [Google Scholar] [CrossRef]
- Hill, L.W. Calculation of crosslink density in short chain networks. Prog. Org. Coat. 1997, 31, 235–243. [Google Scholar] [CrossRef]
- Zhang, C.; Madbouly, S.A.; Kessler, M.R. Biobased polyurethanes prepared from different vegetable oils. ACS Appl. Mater. Interfaces 2015, 7, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Barszczewska-Rybarek, I.M.; Korytkowska-Wałach, A.; Kurcok, M.; Chladek, G.; Kasperski, J. DMA analysis of the structure of crosslinked poly(methyl methacrylate)s. Acta Bioeng. Biomech. 2017, 19, 47–53. [Google Scholar] [CrossRef]
- Omer, R.A.; Hughes, A.; Hama, J.R.; Wang, W.; Tai, H. Hydrogels from dextran and soybean oil by UV photo-polymerization. J. Appl. Polym. Sci. 2015, 132, 41446. [Google Scholar] [CrossRef]
- Bermejo, J.S.; Ugarte, C.M. Influence of cross-linking density on the glass transition and structure of chemically cross-linked PVA: A molecular dynamics study. Macromol. Theory Simul. 2009, 18, 317–327. [Google Scholar] [CrossRef]
- Amado, J.C.Q. Thermal Resistance Properties of Polyurethanes and its Composites: A Short Review. J. Res. Updat. Polym. Sci. 2019, 8, 66–84. [Google Scholar] [CrossRef]
- Shufen, L.; Zhi, J.; Kaijun, Y.; Shuqin, Y.; Chow, W.K. Studies on the thermal behavior of polyurethanes. Polym.-Plast. Technol. Eng. 2006, 45, 95–108. [Google Scholar] [CrossRef]
- Zhang, F.A.; Lee, D.K.; Pinnavaia, T.J. PMMA-mesocellular foam silica nanocomposites prepared through batch emulsion polymerization and compression molding. Polymer 2009, 50, 4768–4774. [Google Scholar] [CrossRef]
- Rajkumar, T.; Muthupandiyan, N.; Vijayakumar, C.T. Synthesis and investigation of thermal properties of PMMA-maleimide-functionalized reduced graphene oxide nanocomposites. J. Thermoplast. Compos. Mater. 2020, 33, 85–96. [Google Scholar] [CrossRef]
- Hassan, M.K.; Tucker, S.J.; Abukmail, A.; Wiggins, J.S.; Mauritz, K.A. Polymer chain dynamics in epoxy based composites as investigated by broadband dielectric spectroscopy. Arab. J. Chem. 2016, 9, 305–315. [Google Scholar] [CrossRef]
- Dave, V.J.; Patel, H.S. Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. J. Saudi Chem. Soc. 2013, 21, 18–24. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Q.; Pei, X.; Wang, T. Dynamic mechanical properties of castor oil-based polyurethane/epoxy graft interpenetrating polymer network composites. J. Appl. Polym. Sci. 2010, 116, 1144–1151. [Google Scholar] [CrossRef]
- Hagen, R.; Salmén, L.; Lavebratt, H.; Stenberg, B. Comparison of dynamic mechanical measurements and Tg determinations with two different instruments. Polym. Test. 1994, 13, 113–128. [Google Scholar] [CrossRef]
- Gracia-Fernández, C.A.; Gómez-Barreiro, S.; López-Beceiro, J.; Tarrío Saavedra, J.; Naya, S.; Artiaga, R. Comparative study of the dynamic glass transition temperature by DMA and TMDSC. Polym. Test. 2010, 29, 1002–1006. [Google Scholar] [CrossRef]
- Xie, W.; Guo, S.; Liu, Y.; Chen, R.; Wang, Q. Organic-inorganic hybrid strategy based on ternary copolymerization to prepare flame retardant poly (methyl methacrylate) with high performance. Compos. Part B Eng. 2020, 203, 108437. [Google Scholar] [CrossRef]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Fleischer, M.; Blattmann, H.; Mülhaupt, R. Glycerol-, pentaerythritol- and trimethylolpropane-based polyurethanes and their cellulose carbonate composites prepared via the non-isocyanate route with catalytic carbon dioxide fixation. Green Chem. 2013, 15, 934–942. [Google Scholar] [CrossRef]
- Abolins, A.; Yakushin, V.; Vilsone, D. Properties of polyurethane coatings based on linseed oil phosphate ester polyol. J. Renew. Mater. 2018, 6, 737–745. [Google Scholar] [CrossRef]
- Yakushin, V.; Abolins, A.; Vilsone, D.; Sevastyanova, I. Polyurethane coatings based on linseed oil phosphate ester polyols with intumescent flame retardants. Fire Mater. 2019, 43, 92–100. [Google Scholar] [CrossRef]
- Ishigami, A.; Watanabe, K.; Kurose, T.; Ito, H. Physical and morphological properties of tough and transparent PMMA-based blends modified with polyrotaxane. Polymers 2020, 12, 1790. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gao, F.; Zhong, J.; Shen, L.; Lin, Y. Renewable Castor Oil and DL-Limonene Derived Fully Bio-Based Vinylogous Urethane Vitrimers. Eur. Polym. J. 2020, 135, 109865. [Google Scholar] [CrossRef]
- Bähr, M.; Mülhaupt, R. Linseed and Soybean Oil-Based Polyurethanes Prepared via the Non-Isocyanate Route and Catalytic Carbon Dioxide Conversion. Green Chem. 2012, 14, 483–489. [Google Scholar] [CrossRef]
Sample | First Onset, °C | Tm5%, °C | Tm10%, °C | Tm25%, °C | Tm50%, °C | Residue, % | |
---|---|---|---|---|---|---|---|
Tall oil-based | EIRTOFA_BD_AA_BPAEDA | 349.0 | 342.0 | 361.5 | 388.1 | 417.0 | 2.0 |
EIRTOFA_BD_AA_TMPTA | 342.2 | 318.3 | 341.8 | 369.0 | 396.2 | 1.8 | |
EIRTOFA_BD_AA_PETA | 340.2 | 297.2 | 332.9 | 365.2 | 396.1 | 2.6 | |
EIRTOFA_TMP_AA_BPAEDA | 360.9 | 351.2 | 370.2 | 391.8 | 416.7 | 3.0 | |
EIRTOFA_TMP_AA_TMPTA | 354.1 | 330.9 | 356.3 | 385.8 | 415.3 | 2.6 | |
EIRTOFA_TMP_AA_PETA | 344.7 | 300.3 | 337.7 | 377.7 | 410.0 | 2.8 | |
Commercial polyols-based | L3300_AA_BPAEDA | 342.5 | 331.3 | 349.2 | 368.5 | 394.2 | 0.1 |
L3300_AA_TMPTA | 418.8 | 320.8 | 339.0 | 362.8 | 397.4 | 2.1 | |
L3300_AA_PETA | 332.3 | 309.7 | 331.2 | 356.6 | 393.0 | 2.7 | |
NEO380_AA_BPAEDA | 347.1 | 331.6 | 352.7 | 378.1 | 406.3 | 2.1 | |
NEO380_AA_TMPTA | 341.0 | 321.0 | 344.5 | 374.0 | 407.3 | 6.0 | |
NEO380_AA_PETA | 347.5 | 317.0 | 345.4 | 376.5 | 411.3 | 8.2 |
Sample | Temperature Range, °C (Tanδ > 0.06 °C) | Max. Tanδ | Tg, °C | νe, moles·cm−3 | ρ, g·cm−3 | Mc, g·mol−1 | |
---|---|---|---|---|---|---|---|
Tall oil-based | EIRTOFA_BD_AA_BPAEDA | 2.9–36.4 | 1.21 | 21.0 | 0.59 × 10−3 | 1.167 | 1695 |
EIRTOFA_BD_AA_TMPTA | 2.0–50.7 | 0.73 | 34.6 | 1.98 × 10−3 | 1.211 | 505 | |
EIRTOFA_BD_AA_PETA | −20.0–64.5 | 0.45 | 40.4 | 2.67 × 10−3 | 1.219 | 375 | |
EIRTOFA_TMP_AA_BPAEDA | 21.9–54.5 | 1.07 | 40.5 | 1.89 × 10−3 | 1.116 | 529 | |
EIRTOFA_TMP_AA_TMPTA | 32.6–68.9 | 0.70 | 53.0 | 2.04 × 10−3 | 1.177 | 490 | |
EIRTOFA_TMP_AA_PETA | 52.2–80.2 | 0.27 | 63.4 | 3.17 × 10−3 | 1.235 | 315 | |
Commercial polyols-based | NEO380_AA_BPAEDA | 9.9–43.9 | 1.30 | 28.5 | 0.93 × 10−3 | 1.257 | 1075 |
NEO380_AA_TMPTA | 22.1–56.8 | 0.81 | 38.7 | 2.04 × 10−3 | 1.328 | 490 | |
NEO380_AA_PETA | 20.8–62.7 | 0.72 | 45.3 | 2.55 × 10−3 | 1.330 | 392 | |
L3300_AA_BPAEDA | 1.0–36.5 | 1.18 | 24.5 | 1.13 × 10−3 | 1.171 | 885 | |
L3300_AA_TMPTA | 22.5–55.1 | 0.80 | 39.7 | 2.20 × 10−3 | 1.202 | 455 | |
L3300_AA_PETA | 28.5–57.5 | 0.44 | 46.6 | 2.70 × 10−3 | 1.247 | 369 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pomilovskis, R.; Mierina, I.; Fridrihsone, A.; Kirpluks, M. Bio-Based Polymer Developments from Tall Oil Fatty Acids by Exploiting Michael Addition. Polymers 2022, 14, 4068. https://doi.org/10.3390/polym14194068
Pomilovskis R, Mierina I, Fridrihsone A, Kirpluks M. Bio-Based Polymer Developments from Tall Oil Fatty Acids by Exploiting Michael Addition. Polymers. 2022; 14(19):4068. https://doi.org/10.3390/polym14194068
Chicago/Turabian StylePomilovskis, Ralfs, Inese Mierina, Anda Fridrihsone, and Mikelis Kirpluks. 2022. "Bio-Based Polymer Developments from Tall Oil Fatty Acids by Exploiting Michael Addition" Polymers 14, no. 19: 4068. https://doi.org/10.3390/polym14194068
APA StylePomilovskis, R., Mierina, I., Fridrihsone, A., & Kirpluks, M. (2022). Bio-Based Polymer Developments from Tall Oil Fatty Acids by Exploiting Michael Addition. Polymers, 14(19), 4068. https://doi.org/10.3390/polym14194068