Modeling of Hexavalent Chromium Removal with Hydrophobically Modified Cellulose Nanofibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. CNF Hydrogel Synthesis
2.3. CNF Characterization
2.4. Experimental Procedure: Batch Adsorption of Hexavalent Chromium Solution
2.5. Isotherm and Kinetic Studies
3. Results and Discussion
3.1. CNF Characterization
3.2. Kinetics of Cr(VI) Adsorption with Hydrophobic CNF
3.2.1. Effect of MTMS Dosage
3.2.2. Effect of pH
3.2.3. Effect of Adsorbent Dosage
3.2.4. Effect of Initial Chromium Concentration
3.3. Isotherm Analysis
Model | Parameters | Values |
---|---|---|
Langmuir | Isotherm parameters | kL [L·mg−1] = 21.26 qe [mg·g−1] = 0.3417 RL (C0 = 0.1 mg·L−1) [-] = 0.9670 RL (C0 = 50 mg·L−1) [-] = 5.53·10−2 |
Correlation parameters | R2 = 0.7420 RSS = 2949.55 | |
Freundlich | Isotherm parameters | kF [mg(1−1/n)-L(1/n)·g−1] = 1.3914 nF [-] = 0.8404 |
Correlation parameters | R2 = 0.9902 RSS = 108.01 | |
Dubinin–Raduskevich | Isotherm parameters | BDR [mol2·J−2] = 9.93·10−8 qmax [mg·g−1] = 27.72 |
Thermodynamic parameters | EDR [J·mol−1] = 2243.50 | |
Correlation parameters | R2 = 0.5754 RSS = 2542.39 | |
Temkin | Isotherm parameters | BT [J·mol−1] = 12.83 bT [-J·mol−1] = 188.08 AT [L·g−1] = 1.3759 |
Correlation parameters | R2 = 0.7481 RSS = 1415.93 | |
Sips | Isotherm parameters | nS [-] = 1.2442 kS [L(1/nS)·mol-(1/nS)] = 6.16·10−2 |
Correlation parameters | R2 = 0.9023 RSS = 1529.83 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Kinetic Model | 0 mmol MTMS·g−1 CNF | 1.5 mmol MTMS·g−1 CNF | 3 mmol MTMS·g−1 CNF | |
---|---|---|---|---|
Pseudo-first order | Kinetic parameters | k1 [h−1] = 0.2378 | k1 [h−1] = 8.63·10−2 | k1 [h−1] = 9.16·10−2 |
Correlation parameters | R2 = 0.9653 RSS = 7.11·10−3 | R2 = 0.7725 RSS = 7.84·10−2 | R2 = 0.9674 RSS = 9.38·10−3 | |
Pseudo-second order | Kinetic parameters | k2 [mg·g−1-h−1] = 3.7399 qe [mg·g−1] = 0.2933 | k2 [mg·g−1-h−1] = 6.9175 qe [mg·g−1] = 0.3058 | k2 [mg·g−1-h−1] = 1.4827 qe [mg·g−1] = 0.2610 |
Correlation parameters | R2 = 0.9440 RSS = 1.23·10−2 | R2 = 0.9661 RSS = 5.96·10−3 | R2 = 0.9430 RSS = 1.08·10−2 | |
Elovich | Kinetic parameters | α [h·mg·g−1] = 0.8350 β [g·mg−1] = 21.5517 | α [h·mg·g−1] = 6.6752 β [g·mg−1] = 28.1690 | α [h·mg·g−1] = 1.6142 β [g·mg−1] = 37.7358 |
Correlation parameters | R2 = 0.8109 RSS = 1.23·10−2 | R2 = 0.8005 RSS = 7.74·10−3 | R2 = 0.9540 RSS = 3.90·10−3 | |
Intraparticle diffusion | Kinetic parameters: Step 1 | ki,1 [mg·g−1·min−0.5] = 0.1193 Ci,1 [mg·g−1] = −1.62·10−2 | ki,1 [mg·g−1·min−0.5] = 0.1462 Ci,1 [mg·g−1] = −2.30·10−3 | ki,1 [mg·g−1·min−0.5] = 0.1462 Ci,1 [mg·g−1] = 7.00·10−4 |
Correlation parameters | R2 = 0.9709 RSS = 1.23·10−4 | R2 = 0.9996 RSS = 3.17·10−5 | R2 = 0.9918 RSS = 5.06·10−5 | |
Kinetic parameters: Step 2 | ki,2 [mg·g−1·min−0.5] = 1·10−17 Ci,1 [mg·g−1] = 0.299 | ki,2 [mg·g−1·min−0.5] = 4.00·10−2 Ci,2 [mg·g−1] = 0.196 | ki,2 [mg·g−1·min−0.5] = 0.0239 Ci,1 [mg·g−1] = 0.0658 | |
Correlation parameters | R2 = 0.5477 RSS = 1.23·10−4 | R2 = 0.9996 RSS = 4.25·10−8 | R2 = 0.9839 RSS = 3.67·10−4 | |
Kinetic parameters: Step 3 | ki,3 [mg·g−1·min−0.5] = 2.10·10−3 Ci,3 [mg·g−1] = 0.2878 | |||
Correlation parameters | R2 = 0.8137 RSS = 4.29·10−5 |
Appendix B
Kinetic Model | pH 3 | pH 7 | pH 9 | |
---|---|---|---|---|
Pseudo-first order | Kinetic parameters | k1 [h−1] = 5.55·10−2 | k1 [h−1] = 6.09·10−2 | k1 [h−1] = 0.2179 |
Correlation parameters | R2 = 0.6366 RSS = 0.167 | R2 = 0.9219 RSS = 7.25·10−3 | R2 = 0.9960 RSS = 1.49·10−4 | |
Pseudo-second order | Kinetic parameters | k2 [mg·g−1-h−1] = 11.4405 qe [mg·g−1] = 0.3050 | k2 [mg·g−1-h−1] = 0.9889 qe [mg·g−1] = 0.1821 | k2 [mg·g−1-h−1] = 4.4596 qe [mg·g−1] = 0.1139 |
Correlation parameters | R2 = 0.9980 RSS = 3.29·10−4 | R2 = 0.9612 RSS = 2.77·10−3 | R2 = 0.9801 RSS = 8.14·10−4 | |
Elovich | Kinetic parameters | α [h·mg·g−1] = 43.5512 β [g·mg−1] = 33.7838 | α [h·mg·g−1] = 0.3496 β [g·mg−1] = 46.9484 | α [h·mg·g−1] = 0.3013 β [g·mg−1] = 66.2252 |
Correlation parameters | R2 = 0.8683 RSS = 5.44·10−3 | R2 = 0.8989 RSS = 6.16·10−3 | R2 = 0.9255 RSS = 2.18·10−3 | |
Intraparticle diffusion | Kinetic parameters: Step 1 | ki,1 [mg·g−1·min−0.5] = 0.2346 Ci,1 [mg·g−1] = 1.38·10−2 | ki,1 [mg·g−1·min−0.5] = 2.41·10−2 Ci,1 [mg·g−1] = 4.75·10−4 | ki,1[mg·g−1·min−0.5] = 8.34·10−3 Ci,1 [mg·g−1] = 4.63·10−3 |
Correlation parameters | R2 = 0.9995 RSS = 2.13·10−10 | R2 = 0.9841 RSS = 5.36·10−5 | R2 = 0.9055 RSS = 2.73·10−5 | |
Kinetic parameters: Step 2 | ki,2 [mg·g−1·min−0.5] = 3.01·10−2 Ci,2 [mg·g−1] = 0.2178 | ki,2 [mg·g−1·min−0.5] = 0.2399 Ci,2 [mg·g−1] = −0.4314 | ki,2[mg·g−1·min−0.5] = 4.82·10−2 Ci,2 [mg·g−1] = −3.30·10−2 | |
Correlation parameters | R2 = 0.9965 RSS = 6.23·10−6 | R2 = 0.9999 RSS = 2.13·10−8 | R2 = 0.9891 RSS = 5.05·10−5 | |
Kinetic parameters: Step 3 | ki,3 [mg·g−1·min−0.5] = 2.10·10−3 Ci,3 [mg·g−1] = 0.288 | ki,3 [mg·g−1·min−0.5]= 7.05·10−3 Ci,3 [mg·g−1] = 0.1079 | ki,3[mg·g−1·min−0.5] = 1.35·10−2 Ci,3 [mg·g−1] = 4.42·10−2 | |
Correlation parameters | R2 = 0.8137 RSS = 4.29·10−5 | R2 = 0.9103 RSS = 1.96·10−4 | R2 = 0.9999 RSS = 6.74·10−9 | |
Kinetic parameters: Step 4 | ki,4 [mg·g−1·min−0.5] = 0 Ci,4 [mg·g−1] = 0.1114 | |||
Correlation parameters | RSS = 1.98·10−6 |
Appendix C
Kinetic Model | 250 mg·L−1 | 500 mg·L−1 | 1000 mg·L−1 | |
---|---|---|---|---|
Pseudo-first order | Kinetic parameters | k1 [h−1] = 4.49·10−2 | k1 [h−1] = 5.56·10−2 | k1 [h−1] = 6.69·10−2 |
Correlation parameters | R2 = 0.3713 RSS = 3.31·10−3 | R2 = 0.9267 RSS = 0.159 | R2 = 0.6605 RSS = 0.152 | |
Pseudo-second order | Kinetic parameters | k2 [mg·g−1-h−1] = 3822.25 qe [mg·g−1] = 2.76·10−2 | k2 [mg·g−1-h−1] = 1.1320 qe [mg·g−1] = 0.5787 | k2 [mg·g−1-h−1] = 14.3041 qe [mg·g−1] = 0.3047 |
Correlation parameters | R2 = 0.9256 RSS = 1.55·10−4 | R2 = 0.9596 RSS = 3.78·10−2 | R2 = 0.9957 RSS = 9.31·10−4 | |
Elovich | Kinetic parameters | α [h·mg·g−1] = 229.62 β [g·mg−1] = 462.96 | α [h·mg·g−1] = 3.2448 β [g·mg−1] = 15.1976 | α [h·mg·g−1] = 66.5435 β [g·mg−1] = 35.9712 |
Correlation parameters | R2 = 0.6241 RSS = 2.78·10−4 | R2 = 0.9246 RSS = 4.49· 10−2 | R2 = 0.8683 RSS = 5.34·10−3 | |
Intraparticle diffusion | Kinetic parameters: Step 1 | ki,1 [mg·g−1·min−0.5] = 0.1384 Ci,1 [mg·g−1] = −1.23·10−2 | ki,1 [mg·g−1·min−0.5] = 0.1397 Ci,1 [mg·g−1] = 5.45·10−2 | ki,1 [mg·g−1·min−0.5] = 0.2346 Ci,1 [mg·g−1] = 1.38·10−2 |
Correlation parameters | R2 = 0.9631 RSS = 1.51·10−4 | R2 = 0.9295 RSS = 1.03·10−2 | R2 = 0.9995 RSS = 2.13·10−10 | |
Kinetic parameters: Step 2 | ki,2 [mg·g−1·min−0.5] = 1·10·−17 Ci,2 [mg·g−1] = 2.76·10−2 | ki,2 [mg·g−1·min−0.5] = 7.03·10−2 Ci,2 [mg·g−1] = 0.2210 | ki,2[mg·g−1·min−0.5] = 3.01·10−2 Ci,2 [mg·g−1] = 0.2178 | |
Correlation parameters | R2 = 0.5117 RSS = 1.44·10−11 | R2 = 1.0000 RSS = 4.19·10−7 | R2 = 0.9965 RSS = 6.23·10−6 | |
Kinetic parameters: Step 3 | ki,3 [mg·g−1·min−0.5] = 0 Ci,3 [mg·g−1] = 0.5658 | ki,3[mg·g−1·min−0.5] = 2.10·10−3 Ci,3 [mg·g−1] = 0.2880 | ||
Correlation parameters | RSS = 1.73·10−9 | R2 = 0.8137 RSS = 4.29·10−5 |
Appendix D
Kinetic Model | 0.1 mg·L−1 | 1 mg·L−1 | 5 mg·L−1 | |
---|---|---|---|---|
Pseudo-first order | Kinetic parameters | k1 [h−1] = 8.00·10−2 | k1 [h−1] = 4.76·10−2 | k1 [h−1] = 1.5675 |
Correlation parameters | R2 = 0.8105 RSS = 6.81·10−2 | R2 = 0.8880 RSS = 1.1163 | R2 = 0.7040 RSS = 35.56 | |
Pseudo-second order | Kinetic parameters | k2 [mg·g−1-h−1] = 4.9284 qe [mg·g−1] = 0.3059 | k2 [mg·g−1-h−1] = 3.53·10−2 qe [mg·g−1] = 1.9361 | k2 [mg·g−1-h−1] = 2.99·10−2 qe [mg·g−1] = 6.9541 |
Correlation parameters | R2 = 0.9853 RSS = 3.05·10−3 | R2 = 0.8975 RSS = 0.7128 | R2 = 0.5884 RSS = 54.66 | |
Elovich | Kinetic parameters | α [h·mg·g−1] = 8.6542 β [g·mg−1] = 31.257 | α [h·mg·g−1] = 1.6140 β [g·mg−1] = 4.7996 | α [h·mg·g−1] = 1.20·109 β [g·mg−1] = 4.7547 |
Correlation parameters | R2 = 0.8606 RSS = 5.62·10−3 | R2 = 0.8760 RSS = 0.5550 | R2 = 0.5875 RSS = 3.5383 | |
Intraparticle diffusion | Kinetic parameters: Step 1 | ki,1 [mg·g−1·min−0.5] = 0.1099 Ci,1 [mg·g−1] = 2.88·10−2 | ki,1 [mg·g−1·min−0.5] = 0.6325 Ci,1 [mg·g−1] = −0.1448 | ki,1[mg·g−1·min−0.5] = 0.3298 Ci,1 [mg·g−1] = 4.4590 |
Correlation parameters | R2 = 0.9982 RSS = 1.68·10−4 | R2 = 0.9271 RSS = 3.91·10−2 | R2 = 0.8235 RSS = 19.88 | |
Kinetic parameters: Step 2 | ki,2 [mg·g−1·min−0.5] = 6.00·10−3 Ci,2 [mg·g−1] = 0.2615 | ki,2 [mg·g−1·min−0.5] = 2.29·10−2 Ci,2 [mg·g−1] = 0.5194 | ki,2[mg·g−1·min−0.5] = 0 Ci,2 [mg·g−1]= 4.6922 | |
Correlation parameters | R2 = 0.9978 RSS = 1.66·10−6 | R2 = 0.9690 RSS = 2.79·10−4 | RSS = 9.68·10−9 | |
Kinetic parameters: Step 3 | ki,3 [mg·g−1·min−0.5] = 0 Ci,3 [mg·g−1] = 0.3036 | ki,3 [mg·g−1·min−0.5]= 0.2121 Ci,3 [mg·g−1] = −0.3775 | ki,3[mg·g−1·min−0.5] = 0.617 Ci,3 [mg·g−1] = 0.4177 | |
Correlation parameters | RSS = 1.68·10−4 | R2 = 0.9986RSS = 2.48·10−3 | R2 = 0.9999RSS = 7.46·10−8 | |
Kinetic model | 10 mg/L | 25 mg/L | 50 mg/L | |
Pseudo-first order | Kinetic parameters | k1 [h−1] = 3.00·10−2 | k1 [h−1] = 0.1664 | k1 [h−1] = 3.86·10−2 |
Correlation parameters | R2 = 0.5969 RSS = 307.88 | R2 = 0.5860 RSS = 1592.74 | R2 = 0.8982 RSS = 2433.18 | |
Pseudo-second order | Kinetic parameters | k2 [mg·g−1-h−1] = 5.40·10−2 qe [mg·g−1] = 12.115 | k2 [mg·g−1-h−1] = 8.70·10−3 qe [mg·g−1] = 34.51 | k2 [mg·g−1-h−1] = 6.16·10−3 qe [mg·g−1] = 70.92 |
Correlation parameters | R2 = 0.7242 RSS = 121.03 | R2 = 0.6332 RSS = 1286.27 | R2 = 0.9851 RSS = 236.03 | |
Elovich | Kinetic parameters | α [h·mg·g−1] = 3.82·108 β [g·mg−1] = 2.2222 | α [h·mg·g−1] = 7.29·108 β [g·mg−1] = 0.8143 | α [h·mg·g−1] = 153.74 β [g·mg−1] = 0.1041 |
Correlation parameters | R2 = 0.9184 RSS = 1.5841 | R2 = 0.7408 RSS = 44.33 | R2 = 0.9934 RSS = 166.49 | |
Intraparticle diffusion | Kinetic parameters: Step 1 | ki,1 [mg·g−1·min−0.5] = 1.3193 Ci,1 [mg·g−1] = 8.1756 | ki,1 [mg·g−1·min−0.5] = 4.9473 Ci,1 [mg·g−1] = 21.343 | ki,1[mg·g−1·min−0.5] = 27.162 Ci,1 [mg·g−1] = 4.5797 |
Correlation parameters | R2 = 0.8392 RSS = 66.84 | R2 = 0.8504 RSS = 455.52 | R2 = 0.9935 RSS = 20.97 | |
Kinetic parameters: Step 2 | ki,2 [mg·g−1·min−0.5] = 0 Ci,2 [mg·g−1] = 9.1085 | ki,2 [mg·g−1·min−0.5] = 0.1966 Ci,2 [mg·g−1] = 24.783 | ki,2[mg·g−1·min−0.5] = 8.0237 Ci,2 [mg·g−1] = 24.416 | |
Correlation parameters | RSS = 2.08·10−9 | R2 = 0.9204 RSS = 0.2037 | R2 = 0.9987 RSS = 1.4264 | |
Kinetic parameters: Step 3 | ki,3 [mg·g−1·min−0.5] = 0.3399 Ci,3 [mg·g−1] = 8.5209 | ki,3 [mg·g−1·min−0.5] = 2.2280 Ci,3 [mg·g−1] = 10.785 | ki,3[mg·g−1·min−0.5] = 1.2205 Ci,3 [mg·g−1] = 56.515 | |
Correlation parameters | R2 = 0.9953 RSS = 4.63·10−2 | R2 = 0.9999 RSS = 2.05·10−7 | R2 = 0.9443 RSS = 3.4399 |
References
- Outridge, P.M.; Scheuhammer, A.M. Bioaccumulation and toxicology of chromium: Implications for wildlife. Rev. Environ. Contam. Toxicol. 1993, 130, 31–77. [Google Scholar]
- Kumar, V.; Dwivedi, S.K. A review on accessible techniques for removal of hexavalent Chromium and divalent Nickel from industrial wastewater: Recent research and future outlook. J. Clean. Prod. 2021, 295, 126229. [Google Scholar] [CrossRef]
- Mishra, S.; Bharagava, R.N. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Wise, J.P.; Young, J.L.; Cai, J.; Cai, L. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. Environ. Int. 2022, 158, 106877. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Vaiopoulou, E.; Gikas, P. Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere 2020, 254, 126876. [Google Scholar] [CrossRef]
- Farooq, U.; Kozinski, J.A.; Khan, M.A.; Athar, M. Biosorption of heavy metal ions using wheat based biosorbents—A review of the recent literature. Bioresour. Technol. 2010, 101, 5043–5053. [Google Scholar] [CrossRef] [PubMed]
- Owlad, M.; Aroua, M.K.; Daud, W.A.W.; Baroutian, S. Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review. Water Air Soil Pollut. 2009, 200, 59–77. [Google Scholar] [CrossRef]
- GracePavithra, K.; Jaikumar, V.; Kumar, P.S.; SundarRajan, P. A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J. Clean. Prod. 2019, 228, 580–593. [Google Scholar] [CrossRef]
- Islam, M.A.; Angove, M.J.; Morton, D.W. Recent innovative research on chromium (VI) adsorption mechanism. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100267. [Google Scholar] [CrossRef]
- Singh, P.; Itankar, N.; Patil, Y. Biomanagement of hexavalent chromium: Current trends and promising perspectives. J. Environ. Manag. 2021, 279, 111547. [Google Scholar] [CrossRef] [PubMed]
- Rambabu, K.; Thanigaivelan, A.; Bharath, G.; Sivarajasekar, N.; Banat, F.; Show, P.L. Biosorption potential of Phoenix dactylifera coir wastes for toxic hexavalent chromium sequestration. Chemosphere 2021, 268, 128809. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Cocoletzi, H.; Salinas, R.A.; Águila-Almanza, E.; Rubio-Rosas, E.; Chai, W.S.; Chew, K.W.; Mariscal-Hernández, C.; Show, P.L. Natural hydroxyapatite from fishbone waste for the rapid adsorption of heavy metals of aqueous effluent. Environ. Technol. Innov. 2020, 20, 101109. [Google Scholar] [CrossRef]
- Lee, P.-X.; Liu, B.-L.; Show, P.L.; Ooi, C.W.; Chai, W.S.; Munawaroh, H.S.H.; Chang, Y.-K. Removal of calcium ions from aqueous solution by bovine serum albumin (BSA)-modified nanofiber membrane: Dynamic adsorption performance and breakthrough analysis. Biochem. Eng. J. 2021, 171, 108016. [Google Scholar] [CrossRef]
- Mubashir, M.; Dumée, L.F.; Fong, Y.Y.; Jusoh, N.; Lukose, J.; Chai, W.S.; Show, P.L. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. J. Hazard. Mater. 2021, 415, 125639. [Google Scholar] [CrossRef]
- Aigbe, U.O.; Osibote, O.A. A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. J. Environ. Chem. Eng. 2020, 8, 104503. [Google Scholar] [CrossRef]
- Varghese, A.G.; Paul, S.A.; Latha, M.S. Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ. Chem. Lett. 2019, 17, 867–877. [Google Scholar] [CrossRef]
- Wang, S.-L.; Lee, J.-F. Reaction mechanism of hexavalent chromium with cellulose. Chem. Eng. J. 2011, 174, 289–295. [Google Scholar] [CrossRef]
- Kazachenko, A.; Akman, F.; Medimagh, M.; Issaoui, N.; Vasilieva, N.; Malyar, Y.N.; Sudakova, I.G.; Karacharov, A.; Miroshnikova, A.; Al-Dossary, O.M. Sulfation of Diethylaminoethyl-Cellulose: QTAIM Topological Analysis and Experimental and DFT Studies of the Properties. ACS Omega 2021, 6, 22603–22615. [Google Scholar] [CrossRef]
- Negro, C.; Balea Martin, A.; Sanchez-Salvador, J.; Campano, C.; Fuente, E.; Monte, M.; Blanco, A. Nanocellulose and its potential use for sustainable industrial applications. Lat. Am. Appl. Res.-Int. J. 2020, 50, 59–64. [Google Scholar] [CrossRef]
- Norrrahim, M.N.F.; Kasim, N.A.M.; Knight, V.F.; Misenan, M.S.M.; Janudin, N.; Shah, N.A.A.; Kasim, N.; Yusoff, W.Y.W.; Noor, S.A.M.; Jamal, S.H. Nanocellulose: A bioadsorbent for chemical contaminant remediation. RSC Adv. 2021, 11, 7347–7368. [Google Scholar] [CrossRef] [PubMed]
- Reshmy, R.; Philip, E.; Madhavan, A.; Pugazhendhi, A.; Sindhu, R.; Sirohi, R.; Awasthi, M.K.; Pandey, A.; Binod, P. Nanocellulose as green material for remediation of hazardous heavy metal contaminants. J. Hazard. Mater. 2022, 424, 127516. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Hubbe, M. Charge Properties of Fibers in the Paper Mill Environment. 1. Effect of Electrical Conductivity. J. Pulp Pap. Sci. 2002, 28, 347–353. [Google Scholar]
- Khoo, R.Z.; Chow, W.S.; Ismail, H. Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: A review. Cellulose 2018, 25, 4303–4330. [Google Scholar] [CrossRef]
- Liu, S.; Low, Z.-X.; Xie, Z.; Wang, H. TEMPO-Oxidized Cellulose Nanofibers: A Renewable Nanomaterial for Environmental and Energy Applications. Adv. Mater. Technol. 2021, 6, 2001180. [Google Scholar] [CrossRef]
- Huang, X.Y.; Dognani, G.; Hadi, P.; Yang, M.Y.; Job, A.E.; Hsiao, B.S. Cationic Dialdehyde Nanocellulose from Sugarcane Bagasse for Efficient Chromium(VI) Removal. ACS Sustain. Chem. Eng. 2020, 8, 4734–4744. [Google Scholar] [CrossRef]
- Ossa-Paredes, R.; Bastidas, B.; Carvajal-Barriga, E.J. Remediation of Contaminated Water with Chromium VI by Sorption in Surface-activated-nanocellulose spheroids. Pollution 2022, 8, 489–500. [Google Scholar]
- Ben Hammouda, S.; Chen, Z.; An, C.; Lee, K. Recent advances in developing cellulosic sorbent materials for oil spill cleanup: A state-of-the-art review. J. Clean. Prod. 2021, 311, 127630. [Google Scholar] [CrossRef]
- Zhang, Z.; Sèbe, G.; Rentsch, D.; Zimmermann, T.; Tingaut, P. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 2014, 26, 2659–2668. [Google Scholar] [CrossRef]
- Janik, P.; Zawisza, B.; Talik, E.; Sitko, R. Selective adsorption and determination of hexavalent chromium ions using graphene oxide modified with amino silanes. Microchim. Acta 2018, 185, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Park, J.-A.; Kim, H.-G.; Lee, J.-H.; Cho, S.-H.; Choi, K.; Jung, K.-W.; Lee, S.Y.; Choi, J.-W. Most suitable amino silane molecules for surface functionalization of graphene oxide toward hexavalent chromium adsorption. Chemosphere 2020, 251, 126387. [Google Scholar] [CrossRef] [PubMed]
- Jamroz, E.; Kocot, K.; Zawisza, B.; Talik, E.; Gagor, A.; Sitko, R. A green analytical method for ultratrace determination of hexavalent chromium ions based on micro-solid phase extraction using amino-silanized cellulose membranes. Microchem. J. 2019, 149, 104060. [Google Scholar] [CrossRef]
- Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules 2007, 8, 2485–2491. [Google Scholar] [CrossRef]
- Fukuzumi, H.; Saito, T.; Okita, Y.; Isogai, A. Thermal stabilization of TEMPO-oxidized cellulose. Polym. Degrad. Stab. 2010, 95, 1502–1508. [Google Scholar] [CrossRef]
- Balea, A.; Merayo, N.; De La Fuente, E.; Negro, C.; Blanco, Á. Assessing the influence of refining, bleaching and TEMPO-mediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives. Ind. Crops Prod. 2017, 97, 374–387. [Google Scholar] [CrossRef]
- Sanchez-Salvador, J.L.; Campano, C.; Negro, C.; Monte, M.C.; Blanco, A. Increasing the Possibilities of TEMPO-Mediated Oxidation in the Production of Cellulose Nanofibers by Reducing the Reaction Time and Reusing the Reaction Medium. Adv. Sustain. Syst. 2021, 5, 2000277. [Google Scholar] [CrossRef]
- Balea, A.; Sanchez-Salvador, J.L.; Monte, M.C.; Merayo, N.; Negro, C.; Blanco, A. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production. Molecules 2019, 24, 1800. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Salvador, J.L.; Balea, A.; Monte, M.C.; Negro, C.; Miller, M.; Olson, J.; Blanco, A. Comparison Of Mechanical And Chemical Nanocellulose As Additives To Reinforce Recycled Cardboard. Sci. Rep. 2020, 10, 3778. [Google Scholar] [CrossRef]
- APHA. Standard Methods: 3500-Cr CHROMIUM. Chromium by colororimetry. In Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 2018. [Google Scholar]
- Alsaiari, N.S.; Katubi, K.M.; Alzahrani, F.M.; Amari, A.; Osman, H.; Rebah, F.B.; Tahoon, M.A. Synthesis, Characterization and Application of Polypyrrole Functionalized Nanocellulose for the Removal of Cr(VI) from Aqueous Solution. Polymers 2021, 13, 3691. [Google Scholar] [CrossRef]
- Park, S.Y.; Goo, S.; Shin, H.; Kim, J.; Youn, H.J. Structural properties of cellulose nanofibril foam depending on wet foaming conditions in Pickering stabilization. Cellulose 2021, 28, 10291–10304. [Google Scholar] [CrossRef]
- Largitte, L.; Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Andelescu, A.; Nistor, M.A.; Muntean, S.G.; Rădulescu-Grad, M.E. Adsorption studies on copper, cadmium, and zinc ion removal from aqueous solution using magnetite/carbon nanocomposites. Sep. Sci. Technol. 2018, 53, 2352–2364. [Google Scholar] [CrossRef]
- Lim, L.B.L.; Priyantha, N.; Tennakoon, D.T.B.; Chieng, H.I.; Dahri, M.K.; Suklueng, M. Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies. Arab. J. Chem. 2017, 10, S3216–S3228. [Google Scholar] [CrossRef] [Green Version]
- Patiño-Masó, J.; Serra-Parareda, F.; Tarrés, Q.; Mutjé, P.; Espinach, F.X.; Delgado-Aguilar, M. TEMPO-Oxidized Cellulose Nanofibers: A Potential Bio-Based Superabsorbent for Diaper Production. Nanomaterials 2019, 9, 1271. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Liu, R.; Liu, X.; Wu, M. Preparation of Self-supporting Bagasse Cellulose Nanofibrils Hydrogels Induced by Zinc Ions. Nanomaterials 2018, 8, 800. [Google Scholar] [CrossRef] [Green Version]
- Ghiasi, F.; Eskandari, M.H.; Golmakani, M.-T.; Hosseini, S.M.H. Development of highly stable colloidal dispersions of gelled-oil nanoparticles loaded with cuminaldehyde. J. Colloid. Interf. Sci. 2019, 541, 65–74. [Google Scholar] [CrossRef]
- Necula, B.S.; Apachitei, I.; Fratila-Apachitei, L.E.; Teodosiu, C.; Duszczyk, J. Stability of nano-/microsized particles in deionized water and electroless nickel solutions. J. Colloid. Interfaces.Sci. 2007, 314, 514–522. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Davoudpour, Y.; Aprilia, N.A.S.; Mustapha, A.; Hossain, S.; Islam, N.; Dungani, R. Nanocellulose-Based Polymer Nanocomposite: Isolation, Characterization and Applications. In Nanocellulose Polymer Nanocomposites; Scrivener Publishing LLC: Beverly, MA, USA, 2014; pp. 273–309. [Google Scholar]
- Balea, A.; Fuente, E.; Tarrés, Q.; Pèlach, M.À.; Mutjé, P.; Delgado-Aguilar, M.; Blanco, A.; Negro, C. Influence of pretreatment and mechanical nanofibrillation energy on properties of nanofibers from Aspen cellulose. Cellulose 2021, 28, 9187–9206. [Google Scholar] [CrossRef]
- Kim, Y.; Park, J.; Bang, J.; Kim, J.; Jin, H.-J.; Kwak, H.W. Highly efficient Cr(VI) remediation by cationic functionalized nanocellulose beads. J. Hazard. Mater. 2022, 426, 128078. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Peng, J.; Ren, T.; Luo, Q.; Luo, Y.; Zhang, N.; Huang, Y.; Guo, X.; Wu, Y. Novel fluorescent lignin-based hydrogel with cellulose nanofibers and carbon dots for highly efficient adsorption and detection of Cr(VI). Sci. Total Environ. 2021, 760, 143395. [Google Scholar] [CrossRef]
- Kumar, N.; Kardam, A.; Rajawat, D.S.; Jain, V.K.; Suman. Carboxymethyl nanocellulose stabilized nano zero-valent iron: An effective method for reduction of hexavalent chromium in wastewater. Mater. Res. Express 2019, 6, 1150f3. [Google Scholar] [CrossRef]
- Pourfadakari, S.; Jorfi, S.; Ahmadi, M.; Takdastan, A. Experimental data on adsorption of Cr(VI) from aqueous solution using nanosized cellulose fibers obtained from rice husk. Data Brief 2017, 15, 887–895. [Google Scholar] [CrossRef]
- Huang, H.H.; He, D.L.; Tang, Y.N.; Guo, Y.N.; Li, P.; Qv, W.; Deng, F.; Lu, F.H. Adsorption of Hexavalent Chromium from an Aqueous Phase by Hydroxypropyl Methylcellulose Modified with Diethylenetriamine. J. Chem. Eng. Data 2019, 64, 98–106. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Xu, Q.H.; Wang, Y.L.; Jin, L.Q.; Wang, Y.; Qin, M.H. Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J. Hazard. Mater. 2017, 339, 91–99. [Google Scholar] [CrossRef]
- Saha, B.; Orvig, C. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev. 2010, 254, 2959–2972. [Google Scholar] [CrossRef]
- Qiu, B.; Guo, J.; Zhang, X.; Sun, D.Z.; Gu, H.B.; Wang, Q.; Wang, H.W.; Wang, X.F.; Zhang, X.; Weeks, B.L.; et al. Polyethylenimine Facilitated Ethyl Cellulose for Hexavalent Chromium Removal with a Wide pH Range. Acs Appl. Mater. Interfaces 2014, 6, 19816–19824. [Google Scholar] [CrossRef]
- Singh, K.; Arora, J.K.; Sinha, T.J.M.; Srivastava, S. Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: Computational modeling approach. Clean Technol. Environ. Policy 2014, 16, 1179–1191. [Google Scholar] [CrossRef]
- Baral, S.S.; Das, S.N.; Rath, P. Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochem. Eng. J. 2006, 31, 216–222. [Google Scholar] [CrossRef]
- Nasseh, N.; Taghavi, L.; Barikbin, B.; Harifi-Mood, A.R. The removal of Cr(VI) from aqueous solution by almond green hull waste material: Kinetic and equilibrium studies. J. Water Reuse Desalination 2016, 7, 449–460. [Google Scholar] [CrossRef]
- Omidvar Borna, M.; Pirsaheb, M.; Vosoughi Niri, M.; Khosravi Mashizie, R.; Kakavandi, B.; Zare, M.R.; Asadi, A. Batch and column studies for the adsorption of chromium(VI) on low-cost Hibiscus Cannabinus kenaf, a green adsorbent. J. Taiwan Inst. Chem. Eng. 2016, 68, 80–89. [Google Scholar] [CrossRef]
- Rai, M.K.; Shahi, G.; Meena, V.; Meena, R.; Chakraborty, S.; Singh, R.S.; Rai, B.N. Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resour.-Effic. Technol. 2016, 2, S63–S70. [Google Scholar] [CrossRef]
- Mohan, D.; Singh, K.P.; Singh, V.K. Removal of Hexavalent Chromium from Aqueous Solution Using Low-Cost Activated Carbons Derived from Agricultural Waste Materials and Activated Carbon Fabric Cloth. Ind. Eng. Chem. Res. 2005, 44, 1027–1042. [Google Scholar] [CrossRef]
- Dima, J.B.; Sequeiros, C.; Zaritzky, N.E. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes. Chemosphere 2015, 141, 100–111. [Google Scholar] [CrossRef]
- Debnath, A.; Bera, A.; Chattopadhyay, K.K.; Saha, B. Facile additive-free synthesis of hematite nanoparticles for enhanced adsorption of hexavalent chromium from aqueous media: Kinetic, isotherm, and thermodynamic study. Inorg. Nano-Met. Chem. 2017, 47, 1605–1613. [Google Scholar] [CrossRef]
- Yang, R.; Aubrecht, K.B.; Ma, H.; Wang, R.; Grubbs, R.B.; Hsiao, B.S.; Chu, B. Thiol-modified cellulose nanofibrous composite membranes for chromium (VI) and lead (II) adsorption. Polymer 2014, 55, 1167–1176. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, Z.; Zhong, M.; Xu, W.; He, C.; Zhang, Z. Polypyrrole/bacterial cellulose nanofiber composites for hexavalent chromium removal. Cellulose 2021, 28, 2229–2240. [Google Scholar] [CrossRef]
- Jain, P.; Varshney, S.; Srivastava, S. Synthetically modified nano-cellulose for the removal of chromium: A green nanotech perspective. IET Nanobiotechnol. 2017, 11, 45–51. [Google Scholar] [CrossRef]
- Sun, Y.; Yue, Q.; Mao, Y.; Gao, B.; Gao, Y.; Huang, L. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/Mn activation. J. Hazard. Mater. 2014, 265, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Acharya, J.; Sahu, J.N.; Sahoo, B.K.; Mohanty, C.R.; Meikap, B.C. Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chem. Eng. J. 2009, 150, 25–39. [Google Scholar] [CrossRef]
- Liu, S.X.; Chen, X.; Chen, X.Y.; Liu, Z.F.; Wang, H.L. Activated carbon with excellent chromium(VI) adsorption performance prepared by acid–base surface modification. J. Hazard. Mater. 2007, 141, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, W.; Cai, J.; Cheng, S.-Y.; Ding, W.-P. Citric acid-incorporated cellulose nanofibrous mats as food materials-based biosorbent for removal of hexavalent chromium from aqueous solutions. Int. J. Biol. Macromol. 2020, 149, 459–466. [Google Scholar] [CrossRef]
- McCabe, W.L.; Smith, J.C.; Harriott, P. Unit Operations of Chemical Engineering; McGraw Hill: Boston, MA, USA, 2001. [Google Scholar]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Qiu, B.; Gu, H.; Yan, X.; Guo, J.; Wang, Y.; Sun, D.; Wang, Q.; Khan, M.; Zhang, X.; Weeks, B.L.; et al. Cellulose derived magnetic mesoporous carbon nanocomposites with enhanced hexavalent chromium removal. J. Mater. Chem. A 2014, 2, 17454–17462. [Google Scholar] [CrossRef]
- Rao, D.G.; Senthikumar, R.; Byrne, J.A.; Feroz, S. Wastewater Treatment: Advanced Processes and Technologies; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Dawodu, F.A.; Akpan, B.M.; Akpomie, K.G. Sequestered capture and desorption of hexavalent chromium from solution and textile wastewater onto low cost Heinsia crinita seed coat biomass. Appl. Water Sci. 2019, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- De Andrade Neto, J.C.; Pereira, G.J.; Morandim-Giannetti, A.d.A. Chitosan and corn stover derivative bioadsorbent: Characterization and application in hexavalent chromium adsorption processes. Cellulose 2020, 27, 6317–6331. [Google Scholar] [CrossRef]
- Batool, F.; Akbar, J.; Iqbal, S.; Noreen, S.; Bukhari, S.N.A. Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis. Bioinorg. Chem. Appl. 2018, 2018, 3463724. [Google Scholar] [CrossRef]
- Choudhary, B.; Paul, D. Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar. J. Environ. Chem. Eng. 2018, 6, 2335–2343. [Google Scholar] [CrossRef]
Model | Nonlinearized Equations | Linearization | Ref. | ||
---|---|---|---|---|---|
Pseudo-first order 1 | (4) | (8) | [43] | ||
Pseudo-second order | (5) | (9) | [43] | ||
(10) | [44] | ||||
Elovich | (6) | - | [45] | ||
Weber and Morris (Intraparticle) | (7) | - | [46] |
Model | Nonlinearized Equations | Linearization | Ref. | ||
---|---|---|---|---|---|
Langmuir | (11) | (20) | [47] | ||
(21) | |||||
(22) | |||||
(23) | |||||
(12) | (24) | ||||
Freundlich | (13) | (25) | |||
Temkin | (14) | (26) | |||
(15) | |||||
Dubinin–Raduskevich | (16) | (27) | |||
(17) | |||||
(18) | |||||
Sips 1 | (19) | (28) |
Adsorbent | Contact Time [min] | Adsorbent Dosage [mg·L−1] | Initial Cr(VI) Concentration [mg·L−1] | pH | qmax [mg·g−1] | Maximum Removal Yield [%] | Ref. |
---|---|---|---|---|---|---|---|
CNF from rice husk | 100 | 1500 | 30 | 6 | 3.76 | 92.99 | [57] |
Polypyrrole-bacterial CNF | 180 | 250 | 300 | 2 | 555.6 | 97.5 | [72] |
Thiol-modified CNF composite | 20 | 50 | 4 | 87.5 | 96 | [71] | |
Citric acid-incorporated CNF | 120 | 40 | 50 | 2 | 11 | 23 | [77] |
Amino-silanized cellulose membranes | 300 | 5000 | 50 | 4 | 34.7 | [33] | |
Polyaniline-functionalized CNC | 40 | 500 | 30 | 2.5 | 48.92 | 97.84 | [73] |
Microwave-assisted H3PO4/Fe-modified activated carbon | 200 | 1000 | 30 | 3 | 34.39 | 100 | [74] |
ZnCl2-modified tamarind wood activated carbon | 70 | 3000 | 10 | 3 | 28.02 | 99 | [75] |
Acid-base surface modified activated carbon | 180 | 2000 | 50 | 13.89 | [76] | ||
Hydrophobized CNF Hydrogel (MTMS dosage = 1.5 mmol·g−1) | 330 | 500 | 50 | 3 | 70.38 | >97.14 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojembarrena, F.d.B.; Sánchez-Salvador, J.L.; Mateo, S.; Balea, A.; Blanco, A.; Merayo, N.; Negro, C. Modeling of Hexavalent Chromium Removal with Hydrophobically Modified Cellulose Nanofibers. Polymers 2022, 14, 3425. https://doi.org/10.3390/polym14163425
Ojembarrena FdB, Sánchez-Salvador JL, Mateo S, Balea A, Blanco A, Merayo N, Negro C. Modeling of Hexavalent Chromium Removal with Hydrophobically Modified Cellulose Nanofibers. Polymers. 2022; 14(16):3425. https://doi.org/10.3390/polym14163425
Chicago/Turabian StyleOjembarrena, Francisco de Borja, Jose Luis Sánchez-Salvador, Sergio Mateo, Ana Balea, Angeles Blanco, Noemí Merayo, and Carlos Negro. 2022. "Modeling of Hexavalent Chromium Removal with Hydrophobically Modified Cellulose Nanofibers" Polymers 14, no. 16: 3425. https://doi.org/10.3390/polym14163425
APA StyleOjembarrena, F. d. B., Sánchez-Salvador, J. L., Mateo, S., Balea, A., Blanco, A., Merayo, N., & Negro, C. (2022). Modeling of Hexavalent Chromium Removal with Hydrophobically Modified Cellulose Nanofibers. Polymers, 14(16), 3425. https://doi.org/10.3390/polym14163425