Hydroxyl-Functionalized Covalent Organic Frameworks as High-Performance Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Dihydroxynaphthalene Dicarbaldehyde (NADC)
2.3. Synthesis of Hydroxyl-Functionalized Covalent Organic Frameworks
3. Results
3.1. Design, Synthesis, and Crystallinity of Hydroxyl-Functionalized COFs
3.2. BET, XPS, TEM, FE-SEM, and TGA Analyses of Hydroxyl-Functionalized COFs
3.3. Supercapacitor Application of Hydroxyl-Functionalized COFs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Kuhns, R.J.; Shaw, G.H. Navigating the Energy Maze; Springer: Berlin/Heidelberg, Germany, 2018; pp. 65–69. [Google Scholar]
- Raza, W.; Ali, F.; Raza, N.; Luo, Y.; Kim, K.H.; Yang, J.; Kumar, S.; Mehmood, A.; Kwon, E.E. Recent Advancements in Supercapacitor Technology. Nano Energy 2018, 52, 441–473. [Google Scholar] [CrossRef]
- Vinodh, R.; Gopi, C.V.V.M.; Kummara, V.G.R.; Atchudan, R.; Ahamad, T.; Sambasivam, S.; Yi, M.; Obaidat, I.M.; Kim, H.J. A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications. J. Energy Storage 2020, 32, 101831. [Google Scholar] [CrossRef]
- EL-Mahdy, A.F.M.; Yu, T.C.; Mohamed, M.G.; Kuo, S.W. Secondary structures of polypeptide-based diblock copolymers influence the microphase separation of templates for the fabrication of microporous carbons. Macromolecules 2021, 54, 1030–1042. [Google Scholar] [CrossRef]
- Guney, M.S.; Tepe, Y. Classification and assement of energy storage systems. Renew. Sustain. Energy Rev. 2017, 75, 1187–1197. [Google Scholar] [CrossRef]
- Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. 2017, 5, 12653–12672. [Google Scholar] [CrossRef]
- Sharma, S.; Soni, R.; Kurungot, S.; Asha, S.K. Naphthalene Diimide copolymers by direct arylation polycondensation as highly stable supercapacitor electrode materials. Macromolecules 2018, 51, 954–965. [Google Scholar] [CrossRef]
- El-Mahdy, A.F.M.; Hung, Y.H.; Mansoure, T.H.; Yu, H.H.; Chen, T.; Kuo, S.W. A hollow microtubular triazine- and benzobisoxazole-based covalent organic framework presenting sponge-like shells that functions as a high-performance supercapacitor. Chem. Asian J. 2019, 14, 1429–1435. [Google Scholar] [CrossRef]
- Lu, J.; Lian, F.; Guan, L.; Zhang, Y.; Ding, F. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages. J. Mater. Chem. A 2019, 7, 991–997. [Google Scholar] [CrossRef]
- He, X.; Li, X.; Ma, H.; Han, J.; Zhang, H.; Yu, C.; Xiao, N.; Qiu, J. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. J. Power Sources 2017, 340, 183–191. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, R.; Mu, D.; Tan, G.; Gao, H.; Li, N.; Chen, R.; Wu, F. Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery. Carbon Energy 2022, 4, 458–479. [Google Scholar] [CrossRef]
- Guo, M.; Yuan, C.; Zhang, T.; Yu, X. Solid-state electrolytes for rechargeable magnesium-ion batteries: From structure to mechanism. Small 2022, 2106981. [Google Scholar] [CrossRef] [PubMed]
- DeBlase, C.R.; Hernandez-Burgos, K.; Silberstein, K.E.; Rodríguez-Calero, G.G.; Bisbey, R.P.; Abruña, H.D.; Dichtel, W.R. Rapid and efficient redox processes within 2d covalent organic framework thin films. ACS Nano 2015, 9, 3178–3183. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Li, J.; Jiang, Z.; Shi, M.; Sheng, R.; Liu, Z.; Zhang, S.; Cao, Y.; Wei, T.; Fan, Z. Large-surface-area activated carbon with high density by electrostatic densification for supercapacitor electrodes. Carbon 2021, 175, 281–288. [Google Scholar] [CrossRef]
- Wang, H.; Niu, H.; Wang, H.; Wang, W.; Jin, X.; Wang, H.; Zhou, H.; Lin, T. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance. J. Power Sources 2021, 482, 228986. [Google Scholar] [CrossRef]
- Saber, A.F.; Sharma, S.U.; Lee, J.T.; EL-Mahdy, A.F.M.; Kuo, S.W. Carbazole-conjugated microporous polymers from Suzuki–Miyaura coupling for supercapacitors. Polymer 2022, 254, 125070. [Google Scholar] [CrossRef]
- Liu, H.; Xu, T.; Cai, C.; Liu, K.; Liu, W.; Zhang, M.; Du, H.; Si, C.; Zhang, K. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 2022, 32, 2113082. [Google Scholar] [CrossRef]
- Han, J.; Johnson, I.; Chen, M. 3D continuously porous graphene for energy applications. Adv. Mater. 2022, 34, 2108750. [Google Scholar] [CrossRef]
- Abuzeid, H.R.; EL-Mahdy, A.F.M.; Ahmed, M.M.M.; Kuo, S.W. Triazine-functionalized covalent benzoxazine framework for direct synthesis of N-doped microporous carbon. Polym. Chem. 2019, 10, 6010–6020. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, A.; Shen, L.; Xiao, L.; Hou, L. Carbohydrate assisted preparation of N-doped hierarchically porous carbons from melamine resin via high internal phase emulsion template. Microporous Mesoporous Mater. 2022, 341, 112039. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, J.; Yan, S.; Shao, X.; Dong, Y.; Liu, J.; Li, W.; Zhang, C. New donor–acceptor–donor conjugated polymer with twisted donor–acceptor configuration for high-capacitance electrochromic supercapacitor application. ACS Sustain. Chem. Eng. 2021, 9, 13807–13817. [Google Scholar] [CrossRef]
- Sajjad, M.; Lu, W. Covalent organic frameworks based nanomaterials: Design, synthesis, and current status for supercapacitor applications: A review. J. Energy Storage 2021, 39, 102618. [Google Scholar] [CrossRef]
- Lin, K.Y.; EL-Mahdy, A.F. Covalent triazine frameworks based on triphenylpyridine building block for high-performance supercapacitor and selective CO2 capture. Mater. Chem. Phys. 2022, 281, 125850. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Y.; Zhang, X.; He, E.; Zhang, Z.; Yu, L. Litchi-like porous carbon nanospheres prepared from crosslinked polymer precursors for supercapacitors and electromagnetic wave absorption. Chem. Eng. J. 2021, 416, 128926. [Google Scholar] [CrossRef]
- Abuzeid, H.R.; EL-Mahdy, A.F.M.; Kuo, S.W. Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant 2021, 6, 100054. [Google Scholar] [CrossRef]
- Stegbauer, L.; Zech, S.; Savasci, G.; Banerjee, T.; Podjaski, F.; Schwinghammer, K.; Ochsenfeld, C.; Lotsch, B.V. Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation. Adv. Energy Mater. 2018, 8, 1703278. [Google Scholar] [CrossRef]
- Ahmed, L.R.; EL-Mahdy, A.F.M.; Pan, C.T.; Kuo, S.W. A water-soluble copper-immobilized covalent organic framework functioning as an “OFF–ON” fluorescent sensor for amino acids. Mater. Adv. 2021, 2, 4617–4629. [Google Scholar] [CrossRef]
- Abuzeid, H.R.; EL-Mahdy, A.F.M.; Kuo, S.W. Hydrogen bonding induces dual porous types with microporous and mesoporous covalent organic frameworks based on bicarbazole units. Microporous Mesoporous Mater. 2020, 300, 110151. [Google Scholar] [CrossRef]
- Chen, R.; Shi, J.L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 6430–6434. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.Y.; Xu, S.Q.; Wen, Q.; Pang, Z.F.; Zhao, X. One-step construction of two different kinds of pores in a 2D covalent organic framework. J. Am. Chem. Soc. 2014, 136, 15885–15888. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.F.; Xu, S.Q.; Zhou, T.Y.; Liang, R.R.; Zhan, T.G.; Zhao, X. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy. J. Am. Chem. Soc. 2016, 138, 4710–4713. [Google Scholar] [CrossRef] [PubMed]
- Hasija, V.; Patial, S.; Raizada, P.; Khan, A.A.P.; Asiri, A.M.; Van Le, Q.; Nguyen, V.H.; Singh, P. Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coord. Chem. Rev. 2022, 452, 214298. [Google Scholar] [CrossRef]
- Keller, N.; Bein, T. Optoelectronic processes in covalent organic frameworks. Chem. Soc. Rev. 2021, 50, 1813–1845. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, S.; Azadi, E.; Hussain, C.M. MOF/COF-based materials using 3D printing technology: Applications in water treatment, gas removal, biomedical, and electronic industries. New J. Chem. 2021, 45, 13247–13257. [Google Scholar] [CrossRef]
- Zhao, K.; Gong, P.; Huang, J.; Huang, Y.; Wang, D.; Peng, J.; Shen, D.; Zheng, X.; You, J.; Liu, Z. Fluorescence turn-off magnetic COF composite as a novel nanocarrier for drug loading and targeted delivery. Microporous Mesoporous Mater. 2021, 311, 110713. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, J.; Li, Y.; Zhang, G.; Xing, G.; Chen, L. Arylamine-linked 2D covalent organic frameworks for efficient pseudocapacitive energy storage. Angew. Chem. Int. Ed. 2021, 60, 20754–20759. [Google Scholar] [CrossRef]
- Singh, V.; Byon, H.R. Advances in electrochemical energy storage with covalent organic frameworks. Adv. Mater. 2021, 2, 3188–3212. [Google Scholar] [CrossRef]
- DeBlase, C.R.; Silberstein, K.E.; Truong, T.-T.; Abruña, H.D.; Dichtel, W.R. β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage. J. Am. Chem. Soc. 2013, 135, 16821–16824. [Google Scholar] [CrossRef]
- EL-Mahdy, A.F.M.; Hung, Y.-H.; Mansoure, T.H.; Yu, H.-H.; Hsu, Y.-S.; Wu, K.C.-W.; Kuo, S.-W. Synthesis of [3 + 3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage. J. Taiwan Inst. Chem. Eng. 2019, 103, 199–208. [Google Scholar] [CrossRef]
- Khattak, A.M.; Ghazi, Z.A.; Liang, B.; Khan, N.A.; Iqbal, A.; Li, L.; Tang, Z. A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. J. Mater. Chem. A 2016, 4, 16312–16317. [Google Scholar] [CrossRef]
- Romero, J.; Rodriguez-San-Miguel, D.; Ribera, A.; Mas-Ballesté, R.; Otero, T.F.; Manet, I.; Licio, F.; Abellán, G.; Zamora, F.; Coronado, E. Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene. J. Mater. Chem. A 2017, 5, 4343–4351. [Google Scholar] [CrossRef] [Green Version]
- Elewa, A.M.; EL-Mahdy, A.F.M.; El-sayed, M.H.; Mohamed, M.G.; Kuo, S.W.; Chou, H.H. Sulfur-doped triazine-conjugated microporous polymers for achieving the robust visible-light-driven hydrogen evolution. Chem. Eng. J. 2021, 421, 129825. [Google Scholar] [CrossRef]
- Elewa, A.M.; EL-Mahdy, A.F.M.; Hassan, A.E.; Wen, Z.; Jayakumar, J.; Lee, T.L.; Ting, L.Y.; Mekhemer, I.M.A.; Huang, T.F.; Elsayed, M.H.; et al. Solvent polarity tuning to enhance the crystallinity of 2D-covalent organic frameworks for visible-light-driven hydrogen generation. J. Mater. Chem. A 2022, 10, 12378–12390. [Google Scholar] [CrossRef]
- EL-Mahdy, A.F.M.; Young, C.; Kim, J.; You, J.; Yamauchi, Y.; Kuo, S.W. Hollow Microspherical and Microtubular [3 + 3] Carbazole-Based Covalent Organic Frameworks and Their Gas and Energy Storage Applications. ACS Appl. Mater. Interfaces 2019, 11, 9343–9354. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Wang, J.; Alowasheeir, A.; Lin, J.; Malgras, V.; Bando, Y.; Zakaria, M.B.; Alshehri, A.A.; Kim, J.; Yamauchi, Y.; et al. Three-dimensional macroporous graphitic carbon for supercapacitor application. ChemistrySelect 2018, 3, 4522–4526. [Google Scholar] [CrossRef] [Green Version]
- EL-Mahdy, A.F.M.; Lüder, J.; Kotp, M.G.; Kuo, S.W. A Tröger’s base-derived covalent organic polymer containing carbazole units as a high-performance supercapacitor. Polymers 2021, 13, 1385. [Google Scholar] [CrossRef]
- Ahmed, M.; Kotp, M.G.; Mansoure, T.H.; Lee, R.H.; Kuo, S.W.; EL-Mahdy, A.F.M. Ultrastable carbazole-tethered conjugated microporous polymers for high-performance energy storage. Microporous Mesoporous Mater. 2022, 333, 111766. [Google Scholar] [CrossRef]
- Martyanov, K.; Kuropatov, V. Functionalized o-Quinones: Concepts, achievements and prospects. Inorganics 2018, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Akbari, S.; Foroughi, M.M.; Nadiki, H.H.; Jahani, S. Synthesis and characterization of LaMnO3 nanocrystals and graphene oxide: Fabrication of graphene oxide–LaMnO3 sensor for simultaneous electrochemical determination of hydroquinone and catechol. J. Electrochem. Sci. Eng. 2019, 9, 255–267. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A.; Thommes, M.; et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, X.; Chen, L.; Honsho, Y.; Feng, X.; Saengsawang, O.; Guo, J.; Saeki, A.; Seki, S.; Irle, S.; Nagase, S.; et al. An n-channel two-dimensional covalent organic framework. J. Am. Chem. Soc. 2011, 133, 14510–14513. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ulaganathan, M.; Abdelwahab, I.; Luo, X.; Chen, Z.; Tan, S.J.R.; Wang, X.; Liu, Y.; Geng, D.; Bao, Y.; et al. Two-dimensional polymer synthesized via solid-state polymerization for high-performance supercapacitors. ACS Nano 2018, 12, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Liu, J.; Cao, A.; Song, W.; Wang, D. Interfacial synthesis of ordered and stable covalent organic frameworks on aminofunctionalized carbon nanotubes with enhanced electrochemical performance. Chem. Commun. 2017, 53, 6303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Guo, H.; Xue, R.; Li, Q.; Liu, H.; Wu, N.; Yao, W.; Yang, W. Covalent organic frameworks: A new class of porous organic frameworks for supercapacitor electrodes. ChemElectroChem 2019, 6, 2984–2997. [Google Scholar] [CrossRef]
- Alabadi, A.; Yang, X.; Dong, Z.; Li, Z.; Tan, B. Nitrogen-doped activated carbons derived from a co-polymer for high supercapacitor performance. J. Mater. Chem. A 2014, 2, 11697–11705. [Google Scholar] [CrossRef]
- EL-Mahdy, A.F.M.; Kuo, C.-H.; Alshehri, A.; Young, C.; Yamauchi, Y.; Kim, J.; Kuo, S.-W. Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO2 uptake and energy storage. J. Mater. Chem. A 2018, 6, 19532–19541. [Google Scholar] [CrossRef]
- Mathis, T.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective—Guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 2019, 9, 1902007. [Google Scholar] [CrossRef]
- Zheng, L.; Tang, B.; Dai, X.; Xing, T.; Ouyang, Y.; Wang, Y.; Chang, B.; Shu, H.; Wang, X. High-yield synthesis of n-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors. Chem. Eur. J. 2020, 399, 125671. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.-L.; Chen, J.-Y.; Kuo, S.-W.; Lo, C.-T.; El-Mahdy, A.F.M. Hydroxyl-Functionalized Covalent Organic Frameworks as High-Performance Supercapacitors. Polymers 2022, 14, 3428. https://doi.org/10.3390/polym14163428
Yang T-L, Chen J-Y, Kuo S-W, Lo C-T, El-Mahdy AFM. Hydroxyl-Functionalized Covalent Organic Frameworks as High-Performance Supercapacitors. Polymers. 2022; 14(16):3428. https://doi.org/10.3390/polym14163428
Chicago/Turabian StyleYang, Tzu-Ling, Jhu-You Chen, Shiao-Wei Kuo, Chen-Tsyr Lo, and Ahmed F. M. El-Mahdy. 2022. "Hydroxyl-Functionalized Covalent Organic Frameworks as High-Performance Supercapacitors" Polymers 14, no. 16: 3428. https://doi.org/10.3390/polym14163428
APA StyleYang, T. -L., Chen, J. -Y., Kuo, S. -W., Lo, C. -T., & El-Mahdy, A. F. M. (2022). Hydroxyl-Functionalized Covalent Organic Frameworks as High-Performance Supercapacitors. Polymers, 14(16), 3428. https://doi.org/10.3390/polym14163428