Comparative Studies on Carbon Paste Electrode Modified with Electroactive Polyamic Acid and Corresponding Polyimide without/with Attached Sulfonated Group for Electrochemical Sensing of Ascorbic Acid
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Instrumentation
2.3. Synthesis of N,N′-Bis(4′-aminophenyl)−1,4-quinonenediimine (acat)/3,6-bis((4-aminophenyl)imino)cyclohexa-1,4-diene-1-slfonic Acid (S-ACAT)
2.4. Preparation of Electroactive Polyamic Acid (EPAA/S-EPAA) and Polyimide (EPI/S-EPI)
2.5. Redox Property of the as-Prepared Materials
2.6. Preparation of Test Solutions
- (1)
- PBS solution: 0.1 M PBS solution (pH 7.02) was prepared by dissolving 9.6 g of Dulbecco’s PBS powder in 1 L of deionized water.
- (2)
- AA solution: 2 mM AA solution was prepared in PBS.
- (3)
- CPE preparation: 30 mg carbon paste (weight ratio: graphite:paraffin oil, 3:1) and 20 mg of the given EAP were homogenously mixed and neatly filled in the groove at the front of the electrode to perform the electroactivity test.
- (4)
- AA sensing: A homogeneous mixture of the as-prepared EAP (i.e., EPAA, S-EPAA, EPI and S-EPI) and carbon paste (60:6 mg) was prepared by grounding it with a mortar and pestle for the electrochemical sensing of AA. Subsequently, this mixture was packed into the Teflon tube (3 mm diameter) of the working electrode fitted with copper rod at the centre. Voltalab 50 and Autolab electrochemical workstations were used to perform all the voltammetric measurements in 30 mL of PBS (0.1 M). Platinum foil was used as the reference and Ag/AgCl (3 M NaCl solution) as the counter electrodes. The CPEs modified with EPAA, S-EPAA, EPI and S-EPI were used as the working electrodes at room temperature (25 °C).
3. Results and Discussion
3.1. Characterization
3.2. Polymer Electroactivity Measurement
3.3. Electrochemical Sensing of AA
3.3.1. Amperometry
3.3.2. Kinetic Parameter Study
3.3.3. Differential Pulse Voltammetry (DPV)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Institute of Medicine; Food and Nutrition Board; Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Subcommittee on Upper Reference Levels of Nutrients; Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [CrossRef]
- Liu, Y.; Liu, C.; Li, J. Comparison of Vitamin C and its derivative antioxidant activity: Evaluated by using density functional theory. ACS Omega 2020, 5, 25467–25475. [Google Scholar] [CrossRef] [PubMed]
- Gref, R.; Deloménie, C.; Maksimenko, A.; Gouadon, E.; Percoco, G.; Lati, E.; Desmaële, D.; Zouhiri, F.; Couvreur, P. Vitamin C–squalene bioconjugate promotes epidermal thickening and collagen production in human skin. Sci. Rep. 2020, 10, 16883. [Google Scholar] [CrossRef]
- D’Aniello, C.; Cermola, F.; Patriarca, E.J.; Minchiotti, G. Vitamin C in stem cell biology: Impact on extracellular matrix homeostasis and epigenetics. Stem Cells Int. 2017, 2017, 8936156. [Google Scholar] [CrossRef] [PubMed]
- Backheet, E.Y.; Emara, K.M.; Askal, H.F.; Saleh, G.A. Selective spectrophotometric method for the determination of ascorbic acid in pharmaceutical preparations and fresh fruit juices. Analyst 1991, 116, 861. [Google Scholar] [CrossRef] [PubMed]
- Leubolt, R.; Klein, H. Determination of sulphite and ascorbic acid by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A 1993, 640, 271–277. [Google Scholar] [CrossRef]
- Matsumoto, K.; Yamada, K.; Osajima, Y. Ascorbate electrode for determination of L-ascorbic acid in food. Anal. Chem. 1981, 53, 1974–1979. [Google Scholar] [CrossRef]
- Dosreis, A.; Tarley, C.; Maniasso, N.; Kubota, L. Exploiting micellar environment for simultaneous electrochemical determination of ascorbic acid and dopamine. Talanta 2005, 67, 829–835. [Google Scholar] [CrossRef]
- Erdogdu, G. Investigation and comparison of the electrochemical behavior of some organic and biological molecules at various conducting polymer electrodes. Talanta 1997, 44, 2011–2018. [Google Scholar] [CrossRef]
- Heras, J.Y.; Giacobone, A.F.F.; Battaglini, F. Battaglini, Ascorbate amperometric determination using conducting copolymers from aniline and N-(3-propane sulfonic acid)aniline. Talanta 2007, 71, 1684–1689. [Google Scholar] [CrossRef]
- Rahmanifar, M.; Mousavi, M.; Shamsipur, M. Effect of self-doped polyaniline on performance of secondary Zn–polyaniline battery. J. Power Sources 2002, 110, 229–232. [Google Scholar] [CrossRef]
- Yang, C.-H.; Chih, Y.-K. Molecular Assembled Self-Doped Polyaniline Interlayer for Application in Polymer Light-Emitting Diode. J. Phys. Chem. B 2006, 110, 19412–19417. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Min, Y.; Wu, J.-C.; Hansford, D.J.; Feinberg, S.E.; Epstein, A.J. Synthesis and Characterization of Cytocompatible Sulfonated Polyanilines. Macromol. Rapid Commun. 2011, 32, 887–892. [Google Scholar] [CrossRef]
- da Silva, W.J.; Hümmelgen, I.A.; Mello, R.M.Q. Sulfonated polyaniline/n-type silicon junctions. J. Mater. Sci. Mater. Electron. 2009, 20, 123–126. [Google Scholar] [CrossRef]
- Yang, C.-H.; Chih, Y.-K.; Wu, W.-C.; Chen, C.-H. Molecular assembly engineering of self-doped polyaniline film for application in electrochromic devices. Olid-State Lett. 2006, 9, C5–C8. [Google Scholar] [CrossRef]
- Ali, S.R.; Ma, Y.; Parajuli, R.R.; Balogun, Y.; Lai, W.Y.-C.; He, H. A Nonoxidative Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine. Anal. Chem. 2007, 79, 2583–2587. [Google Scholar] [CrossRef]
- Liao, Y.; Strong, V.; Chian, W.; Wang, X.; Li, X.-G.; Kaner, R.B. Sulfonated Polyaniline Nanostructures Synthesized via Rapid Initiated Copolymerization with Controllable Morphology, Size, and Electrical Properties. Macromolecules 2012, 45, 1570–1579. [Google Scholar] [CrossRef]
- Narasimhan, M.S.; Hagler, M.; Cammarata, V.; Thakur, M.L. Junction devices based on sulfonated polyaniline. Appl. Phys. Lett. 1998, 72, 1063–1065. [Google Scholar] [CrossRef]
- Bhadra, S.; Kim, N.H.; Lee, J.H. Synthesis of water soluble sulfonated polyaniline and determination of crystal structure. J. Appl. Polym. Sci. 2010, 117, 2025–2035. [Google Scholar] [CrossRef]
- Bai, H.; Chen, Q.; Li, C.; Lu, C.; Shi, G. Electrosynthesis of polypyrrole/sulfonated polyaniline composite films and their applications for ammonia gas sensing. Polymer 2007, 48, 4015–4020. [Google Scholar] [CrossRef]
- Mao, Y.; Guo, L.; Ning, X.; Li, J.; Zheng, J. The Signal Amplification in Electrochemical Detection of Chloramphenicol Using Sulfonated Polyaniline-chitosan Composite as Redox Capacitor. Electroanalysis 2018, 30, 2085–2093. [Google Scholar] [CrossRef]
- Fu, Y.; Sheng, Q.; Zheng, J. The novel sulfonated polyaniline-decorated carbon nanosphere nanocomposites for electrochemical sensing of dopamine. New J. Chem. 2017, 41, 15439–15446. [Google Scholar] [CrossRef]
- Fungaro, D.A. Sulfonated polyaniline coated mercury film electrodes for voltammetric analysis of metals in water. Sensors 2001, 1, 206–214. [Google Scholar] [CrossRef]
- Lee, K.-P.; Komathi, S.; Nam, N.J.; Gopalan, A.I. Sulfonated polyaniline network grafted multi-wall carbon nanotubes for enzyme immobilization, direct electrochemistry and biosensing of glucose. Microchem. J. 2010, 95, 74–79. [Google Scholar] [CrossRef]
- Karunagaran, R.; Coghlan, C.; Tran, D.; Tung, T.T.; Burgun, A.; Doonan, C.; Losic, D. A facile synthesis procedure for sulfonated aniline oligomers with distinct microstructures. Materials 2018, 11, 1755. [Google Scholar] [CrossRef] [PubMed]
- Qu, G.; Li, F.; Berda, E.B.; Chi, M.; Liu, X.; Wang, C.; Chao, D. Electroactive polyurea bearing oligoaniline pendants: Electrochromic and anticorrosive properties. Polymer 2015, 58, 60–66. [Google Scholar] [CrossRef]
- Li, F.; Zhou, M.; Wang, J.; Liu, X.; Wang, C.; Chao, D. Synthesis and electrochemical properties of electroactive hyperbranched poly(aryl ether ketone) bearing oligoaniline segments. Synth. Met. 2015, 205, 42–47. [Google Scholar] [CrossRef]
- Wang, S.; Chao, D.; Berda, E.B.; Jia, X.; Yang, R.; Wang, C. Multicolor electrochromic performance of electroactive poly(amic acid) containing pendant oligoaniline, azobenzene and sulfonic acid groups. Electrochim. Acta 2013, 89, 594–599. [Google Scholar] [CrossRef]
- Huang, L.; Zhuang, X.; Hu, J.; Lang, L.; Zhang, P.; Wang, Y.; Chen, X.; Wei, Y.; Jing, X. Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications. Biomacromolecules 2008, 9, 850–858. [Google Scholar] [CrossRef]
- Weng, C.-J.; Jhuo, Y.-S.; Chen, Y.-L.; Feng, C.-F.; Chang, C.-H.; Chen, S.-W.; Yeh, J.-M.; Wei, Y. Intrinsically electroactive polyimide microspheres fabricated by electrospraying technology for ascorbic acid detection. J. Mater. Chem. 2011, 21, 15666–15672. [Google Scholar] [CrossRef]
- Chang, K.-C.; Chu, C.-M.; Chang, C.-H.; Cheng, H.-T.; Hsu, S.-C.; Lan, C.-C.; Chen, H.-H.; Peng, Y.-Y.; Yeh, J.-M. Photoisomerization of electroactive polyimide/multiwalled carbon nanotube composites on the effect of electrochemical sensing for ascorbic acid. Polym. Int. 2015, 64, 373–382. [Google Scholar] [CrossRef]
- Huang, T.-C.; Lin, S.-T.; Yeh, L.-C.; Chen, C.-A.; Huang, H.-Y.; Nian, Z.-Y.; Chen, H.-H.; Yeh, J.-M. Aniline pentamer-based electroactive polyimide prepared from oxidation coupling polymerization for electrochemical sensing application. Polymer 2012, 53, 4373–4379. [Google Scholar] [CrossRef]
- Huang, T.-C.; Yeh, L.-C.; Huang, H.-Y.; Nian, Z.-Y.; Yeh, Y.-C.; Chou, Y.-C.; Yeh, J.-M.; Tsai, M.-H. The use of a carbon paste electrode mixed with multiwalled carbon nanotube/electroactive polyimide composites as an electrode for sensing ascorbic acid. Polym. Chem. 2014, 5, 630–637. [Google Scholar] [CrossRef]
- Ji, W.-F.; Chu, C.-M.; Hsu, S.-C.; Lu, Y.-D.; Yu, Y.-C.; Santiago, K.; Yeh, J.-M. Synthesis and characterization of organo-soluble aniline oligomer-based electroactive doped with gold nanoparticles, and application to electrochemical sensing of ascorbic acid. Polymer 2017, 128, 218–228. [Google Scholar] [CrossRef]
- Yeh, L.-C.; Huang, T.-C.; Huang, Y.-P.; Huang, H.-Y.; Chen, H.-H.; Yang, T.-I.; Yeh, J.-M. Synthesis electroactive polyurea with aniline-pentamer-based in the main chain and its application in electrochemical sensor. Electrochim. Acta 2013, 94, 300–306. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, S.; Li, W.; Cui, Y.; Yang, T. Synthesis of Graphene Oxide-Based Sulfonated Oligoanilines Coatings for Synergistically Enhanced Corrosion Protection in 3.5% NaCl Solution. ACS Appl. Mater. Interfaces 2017, 9, 4034–4043. [Google Scholar] [CrossRef]
- Kalaiyarasan, G.; Kumar, A.V.N.; Sivakumar, C.; Joseph, J. Photoluminescence of oligomers of aniline-2-sulfonic acid formed in the presence of AuCl4− and sodium citrate: Application in the optical detection of hemoglobin. Sens. Actuators B Chem. 2015, 209, 883–888. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Lai, Y.-S.; You, J.-K.; Santiago, K.S.; Yeh, J.-M. Effective anticorrosion coatings prepared from sulfonated electroactive polyurea. Polymer 2019, 166, 98–107. [Google Scholar] [CrossRef]
- Jia, X.; Chao, D.; Liu, H.; He, L.; Zheng, T.; Bian, X.; Wang, C. Synthesis and properties of novel electroactive poly(amic acid) and polyimide copolymers bearing pendant oligoaniline groups. Polym. Chem. 2011, 2, 1300–1306. [Google Scholar] [CrossRef]
- Yeh, L.-C.; Huang, T.-C.; Lai, F.-Y.; Lai, G.-H.; Lo, A.-Y.; Hsu, S.-C.; Yang, T.-I.; Yeh, J.-M. Synthesis of electroactive polyazomethine and its application in electrochromic property and electrochemical sensor. Surf. Coat. Technol. 2016, 303, 154–161. [Google Scholar] [CrossRef]
- Ambrosi, A.; Morrin, A.; Smyth, M.R.; Killard, A.J. The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Anal. Chim. Acta 2008, 609, 37–43. [Google Scholar] [CrossRef]
- Kit-Anan, W.; Olarnwanich, A.; Sriprachuabwong, C.; Karuwan, C.; Tuantranont, A.; Wisitsoraat, A.; Srituravanich, W.; Pimpin, A. Disposable paper-based electrochemical sensor utilizing inkjet-printed Polyaniline modified screen-printed carbon electrode for Ascorbic acid detection. J. Electroanal. Chem. 2012, 685, 72–78. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Hou, H.; You, T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens. Bioelectron. 2008, 24, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Sekli-Belaidi, F.; Temple-Boyer, P.; Gros, P. Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids. J. Electroanal. Chem. 2010, 647, 159–168. [Google Scholar] [CrossRef]
- Weng, C.-J.; Chen, Y.-L.; Chien, C.-M.; Hsu, S.-C.; Jhuo, Y.-S.; Yeh, J.-M.; Dai, C.-F. Preparation of gold decorated SiO2@polyaniline core–shell microspheres and application as a sensor for ascorbic acid. Electrochim. Acta 2013, 95, 162–169. [Google Scholar] [CrossRef]
- Weng, C.-J.; Hsu, P.-H.; Hsu, S.-C.; Chang, C.-H.; Hung, W.-I.; Wu, P.-S.; Yeh, J.-M. Synthesis of electroactive mesoporous gold–organosilica nanocomposite materials via a sol–gel process with non-surfactant templates and the electroanalysis of ascorbic acid. J. Mater. Chem. B 2013, 1, 4983–4991. [Google Scholar] [CrossRef]
- Huang, T.C.; Yeh, L.C.; Lai, G.H.; Lai, F.Y.; Yang, T.I.; Huang, Y.J.; Lo, A.Y.; Yeh, J.M. Electroactive polyurea/CNT composite-based electrode for detection of vitamin C. Express Polym. Lett. 2016, 10, 450–461. [Google Scholar] [CrossRef]
- Bukkitgar, S.; Shetti, N.P.; Kulkarni, R.M.; Reddy, K.R.; Shukla, S.S.; Saji, V.S.; Aminabhavi, T. Electro-Catalytic Behavior of Mg-Doped ZnO Nano-Flakes for Oxidation of Anti-Inflammatory Drug. J. Electrochem. Soc. 2019, 166, B3072–B3078. [Google Scholar] [CrossRef]
- Ngai, K.S.; Wee Tan, T.; Zainal, Z.; Zawawi, R.M.; Zidan, M. Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide. Int. J. Electrochem. Sci. 2013, 8, 10557–10567. [Google Scholar]
- Farida, A.N.; Fitriany, E.; Baktir, A.; Kurniawan, F.; Harsini, M. Voltammetric Study of Ascorbic Acid Using Polymelamine/Gold Nanoparticle Modified Carbon Paste Electrode. IOP Conf. Series Earth Environ. Sci. 2019, 217, 012004. [Google Scholar] [CrossRef]
- Bibi, A.; Hsu, S.-C.; Ji, W.-F.; Cho, Y.-C.; Santiago, K.S.; Yeh, J.-M. Comparative studies of cpes modified with distinctive metal nanoparticle-decorated electroactive polyimide for the detection of UA. Polymers 2021, 13, 252. [Google Scholar] [CrossRef]
Sample | Linear Dynamic Range (µM) | LOD µM | Sensitivity µA·mM−1 | Reference |
---|---|---|---|---|
AF-MWCNT-EPI/CPE | 50–700 | 4.1 | 27.5 | [33] |
EPI4G/CPE | 10–1000 mM | 18.49 | 58.56 | [34] |
EPU/CPE | 0.05–0.5 | 6.1 | 15.4 | [35] |
EPA/CPE | 50–450 | 7.1 | 24.2 | [40] |
DPSA-doped nanoPANI/SPE | 0.5–8 mM | 8.3 | 10.75 | [41] |
Polyaniline(PANI)/SCPE | 30–270 | 30 ± 3 | 17.7 | [42] |
Au-PEDOT/ | 5–300 | 2.5 | 0.875 | [43] |
PANIS/Au/GCE | 80–200 | 0.08 | [44] | |
Gold decorated SiO2@PANI core-shell microspheres | 0.15–8 | 3.775 | 21.8 | [45] |
EMGON5-1 | 1.54 | 78.63 | [46] | |
AF-MWCNT/EPU/CPE | 0.01–0.91 | 1.2 | 35.3 | [47] |
EPI | 0.02–0.3 mM | 28 | 127 | This work |
S-EPI | 0.02–0.3 mM | 10 | 134 | This work |
EPAA | 0.02–0.3 mM | 10 | 127 | This work |
S-EPAA | 0.02–0.3 mM | 1 | 172.23 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.-J.; Bibi, A.; Chen, Y.-C.; Luo, K.-H.; Huang, H.-Y.; Yeh, J.-M. Comparative Studies on Carbon Paste Electrode Modified with Electroactive Polyamic Acid and Corresponding Polyimide without/with Attached Sulfonated Group for Electrochemical Sensing of Ascorbic Acid. Polymers 2022, 14, 3487. https://doi.org/10.3390/polym14173487
Hwang J-J, Bibi A, Chen Y-C, Luo K-H, Huang H-Y, Yeh J-M. Comparative Studies on Carbon Paste Electrode Modified with Electroactive Polyamic Acid and Corresponding Polyimide without/with Attached Sulfonated Group for Electrochemical Sensing of Ascorbic Acid. Polymers. 2022; 14(17):3487. https://doi.org/10.3390/polym14173487
Chicago/Turabian StyleHwang, Jiunn-Jer, Aamna Bibi, Yu-Ci Chen, Kun-Hao Luo, Hsiang-Yuan Huang, and Jui-Ming Yeh. 2022. "Comparative Studies on Carbon Paste Electrode Modified with Electroactive Polyamic Acid and Corresponding Polyimide without/with Attached Sulfonated Group for Electrochemical Sensing of Ascorbic Acid" Polymers 14, no. 17: 3487. https://doi.org/10.3390/polym14173487
APA StyleHwang, J. -J., Bibi, A., Chen, Y. -C., Luo, K. -H., Huang, H. -Y., & Yeh, J. -M. (2022). Comparative Studies on Carbon Paste Electrode Modified with Electroactive Polyamic Acid and Corresponding Polyimide without/with Attached Sulfonated Group for Electrochemical Sensing of Ascorbic Acid. Polymers, 14(17), 3487. https://doi.org/10.3390/polym14173487