Mixed-Matrix Membranes Based on Polyetherimide, Metal–Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Membrane Characterization
2.4. Gas Permeation Analysis
3. Results
3.1. PEI/IL Membranes
3.2. Polymer/ZIF-8 Membranes
3.3. PEI/IL/ZIF-8 Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tollefson, J.; Weiss, K.R. Nations approve historic global climate accord. Nat. News 2015, 528, 315. [Google Scholar] [CrossRef] [PubMed]
- Smithson, P.A. IPCC 2001: Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2001: The Scientific Basis; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; p. 881. [Google Scholar]
- Jacobson, M.Z. Review of Solutions to Global Warming, Air Pollution, and Energy. Energy Environ. Sci. 2009, 28, 14. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2005. [Google Scholar]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- Oyenekan, B.A.; Rochelle, G.T. Energy Performance of Stripper Configurations for CO2 Capture by Aqueous Amines. Ind. Eng. Chem. Res. 2006, 45, 2457–2464. [Google Scholar] [CrossRef]
- Powell, C.E.; Qiao, G.G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 2006, 279, 1–49. [Google Scholar] [CrossRef]
- Favre, E. Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects. Chem. Eng. J. 2011, 171, 782–793. [Google Scholar] [CrossRef]
- Ho, M.T.; Allinson, G.W.; Wiley, D.E. Reducing the Cost of CO2 Capture from Flue Gases Using Pressure Swing Adsorption. Ind. Eng. Chem. Res. 2008, 47, 4883–4890. [Google Scholar] [CrossRef]
- Hägg, M.-B.; Lindbråthen, A. CO2 Capture from Natural Gas Fired Power Plants by Using Membrane Technology. Ind. Eng. Chem. Res. 2005, 44, 7668–7675. [Google Scholar] [CrossRef]
- Bredesen, R.; Jordal, K.; Bolland, O. High-temperature membranes in power generation with CO2 capture. Chem. Eng. Process. Process Intensif. 2004, 43, 1129–1158. [Google Scholar] [CrossRef]
- Tuinier, M.; Annaland, M.V.S.; Kramer, G.; Kuipers, J. Cryogenic CO2 capture using dynamically operated packed beds. Chem. Eng. Sci. 2010, 65, 114–119. [Google Scholar] [CrossRef]
- Baker, R.W. Future Directions of Membrane Gas Separation Technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Baker, R.W.; Lokhandwala, K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Koros, W.J. Gas separation membranes: Needs for combined materials science and processing approaches. Macromol. Symp. 2002, 188, 13–22. [Google Scholar] [CrossRef]
- Maier, G. Gas Separation with Polymer Membranes. Angew. Chem. Int. Ed. 1998, 37, 2960–2974. [Google Scholar] [CrossRef]
- Stern, S.A. Polymers for gas separations: The next decade. J. Membr. Sci. 1994, 94, 1–65. [Google Scholar] [CrossRef]
- Freeman, B.D.; Pinnau, I. Polymeric Materials for Gas Separations, in: Polymer Membranes for Gas and Vapor Separation. Am. Chem. Soc. 1999, 1–27. [Google Scholar] [CrossRef]
- Merkel, T.C.; Freeman, B.D.; Spontak, R.J.; He, Z.; Pinnau, I.; Meakin, P.; Hill, A.J. Ultrapermeable, Reverse-Selective Nanocomposite Membranes. Science 2002, 296, 519–522. [Google Scholar] [CrossRef]
- Moaddeb, M.; Koros, W.J. Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J. Membr. Sci. 1997, 125, 143–163. [Google Scholar] [CrossRef]
- Hibshman, C.; Cornelius, C.; Marand, E. The gas separation effects of annealing polyimide–organosilicate hybrid membranes. J. Membr. Sci. 2003, 211, 25–40. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamada, Y. Physical and Gas Transport Properties of Novel Hyperbranched Polyimide? Silica Hybrid Membranes. Polym. Bull. 2005, 53, 139–146. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.M. Gas permeation properties of poly (amide-6-b-ethylene oxide)–silica hybrid membranes. J. Membr. Sci. 2001, 193, 209–225. [Google Scholar] [CrossRef]
- Joly, C.; Smaihi, M.; Porcar, L.; Noble, R.D. Polyimide−Silica Composite Materials: How Does Silica Influence Their Microstructure and Gas Permeation Properties? Chem. Mater. 1999, 11, 2331–2338. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef]
- Yaghi, O.M.; O′Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319, 939–943. [Google Scholar] [CrossRef]
- Dai, Y.; Johnson, J.; Karvan, O.; Sholl, D.S.; Koros, W. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. J. Membr. Sci. 2012, 401–402, 76–82. [Google Scholar] [CrossRef]
- Winarta, J.; Meshram, A.; Zhu, F.; Li, R.; Jafar, H.; Parmar, K.; Liu, J.; Mu, B. Metal–organic framework-based mixed-matrix membranes for gas separation: An overview. J. Appl. Polym. Sci. 2020, 58, 2518–2546. [Google Scholar] [CrossRef]
- Guan, W.; Dai, Y.; Dong, C.; Yang, X.; Xi, Y. Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: A review. J. Appl. Polym. Sci. 2020, 137, 48968. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M. Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angew. Chem. Int. Ed. 2006, 45, 1557–1559. [Google Scholar] [CrossRef] [PubMed]
- Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. J. Am. Chem. Soc. 2009, 131, 16000–16001. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, M.J.C.; Balkus, K.J., Jr.; Ferraris, J.P.; Musselman, I.H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 2010, 361, 28–37. [Google Scholar] [CrossRef]
- Haldoupis, E.; Watanabe, T.; Nair, S.; Sholl, D.S. Quantifying Large Effects of Framework Flexibility on Diffusion in MOFs: CH4 and CO2 in ZIF-8. ChemPhysChem 2012, 13, 3449–3452. [Google Scholar] [CrossRef]
- Nafisi, V.; Hägg, M.-B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J. Membr. Sci. 2014, 459, 244–255. [Google Scholar] [CrossRef]
- Xu, L.; Xiang, L.; Wang, C.; Yu, J.; Zhang, L.; Pan, Y. Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals. Chin. J. Chem. Eng. 2017, 25, 882–891. [Google Scholar] [CrossRef]
- Chen, F.; Dong, S.; Wang, Z.; Xu, J.; Xu, R.; Wang, J. Preparation of mixed matrix composite membrane for hydrogen purification by incorporating ZIF-8 nanoparticles modified with tannic acid. Int. J. Hydrogen Energy 2020, 45, 7444–7454. [Google Scholar] [CrossRef]
- Sutrisna, P.D.; Savitri, E. High gas permeability of nanoZIF-8/polymer-based mixed matrix membranes intended for biogas purification. J. Polym. Eng. 2020, 40, 459–467. [Google Scholar] [CrossRef]
- Jiao, C.; Li, Z.; Li, X.; Wu, M.; Jiang, H. Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8. Sep. Purif. Technol. 2021, 259, 118190. [Google Scholar] [CrossRef]
- Balçık, M.; Tantekin-Ersolmaz, S.B.; Ahunbay, M.G. Interfacial analysis of mixed-matrix membranes under exposure to high-pressure CO2. J. Membr. Sci. 2020, 607, 118147. [Google Scholar] [CrossRef]
- Van Essen, M.; Montrée, E.; Houben, M.; Borneman, Z.; Nijmeijer, K. Magnetically Aligned and Enriched Pathways of Zeolitic Imidazolate Framework 8 in Matrimid Mixed Matrix Membranes for Enhanced CO2 Permeability. Membranes 2020, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Díaz, K.; Garrido, L.; López-González, M.; del Castillo, L.F.; Riande, E. CO2 Transport in Polysulfone Membranes Containing Zeolitic Imidazolate Frameworks as Determined by Permeation and PFG NMR Techniques. Macromolecules 2009, 43, 316–325. [Google Scholar] [CrossRef]
- Benedetti, F.M.; De Angelis, M.G.; Degli Esposti, M.; Fabbri, P.; Masili, A.; Orsini, A.; Pettinau, A. Enhancing the Separation Performance of Glassy PPO with the Addition of a Molecular Sieve (ZIF-8): Gas Transport at Various Temperatures. Membranes 2020, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Clémenson, S.; Espuche, E.; David, L.; Léonard, D. Nanocomposite membranes of polyetherimide nanostructured with palladium particles: Processing route, morphology and functional properties. J. Membr. Sci. 2010, 361, 167–175. [Google Scholar] [CrossRef]
- Kurdi, J.; Tremblay, A.Y. Preparation of defect-free asymmetric membranes for gas separations. J. Appl. Polym. Sci. 1999, 73, 1471–1482. [Google Scholar] [CrossRef]
- López-González, M.M.; Compañ, V.; Saiz, E.; Riande, E.; Guzmán, J. Effect of the upstream pressure on gas transport in poly(ether-imide) films. J. Membr. Sci. 2005, 253, 175–181. [Google Scholar] [CrossRef]
- Qariouh, R.H.; Schué, F.; Schué, C. Bailly, Sorption, diffusion and pervaporation of water/ethanol mixtures in polyetherimide membranes. Polym. Int. 1999, 48, 171–180. [Google Scholar] [CrossRef]
- Ripoche, A.; Menut, P.; Dupuy, C.; Caquineau, H.; Deratani, A. Poly (ether imide) membrane formation by water vapour induced phase inversion. Macromol. Symp. 2002, 188, 37–48. [Google Scholar] [CrossRef]
- Uriarte, C.; Alfageme, J.; Iruin, J.J. Carbon dioxide transport properties of composite membranes of a polyetherimide and a liquid crystal polymer. Eur. Polym. J. 1998, 34, 1405–1413. [Google Scholar] [CrossRef]
- Eiras, Y.D.; Labreche, L.A. Pessan, Ultem®/ZIF-8 mixed matrix membranes for gas separation: Transport and physical prop-erties. Mater. Res. 2016, 19, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Vega, J.; Andrio, A.; Lemus, A.; Díaz, J.; del Castillo, L.; Gavara, R.; Compañ, V. Modification of polyetherimide membranes with ZIFs fillers for CO2 separation. Sep. Purif. Technol. 2019, 212, 474–482. [Google Scholar] [CrossRef]
- Zhu, H.; Jie, X.; Wang, L.; Kang, G.; Liu, D.; Cao, Y. Effect of MIL-53 on phase inversion and gas separation performance of mixed matrix hollow fiber membranes. RSC Adv. 2016, 6, 69124–69134. [Google Scholar] [CrossRef]
- Song, Q.; Nataraj, S.K.; Roussenova, M.V.; Tan, J.C.; Hughes, D.J.; Li, W.; Bourgoin, P.; Alam, M.A.; Cheetham, A.K.; Al-Muhtaseb, S.A.; et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 2012, 5, 8359–8369. [Google Scholar] [CrossRef]
- Ahmad, N.N.R.; Mukhtar, H.; Mohshim, D.F.; Nasir, R.; Man, Z. Surface modification in inorganic filler of mixed matrix mem-brane for enhancing the gas separation performance. Rev. Chem. Eng. 2016, 32, 181–200. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Zeng, S.; Gao, H.; Bai, L.; Deng, J.; Yang, Q.; Zhang, S. Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation. RSC Adv. 2017, 7, 6422–6431. [Google Scholar] [CrossRef]
- Gao, H.; Bai, L.; Han, J.; Yang, B.; Zhang, S.; Zhang, X. Functionalized ionic liquid membranes for CO2 separation. Chem. Commun. 2018, 54, 12671–12685. [Google Scholar] [CrossRef]
- Hasib-Ur-Rahman, M.; Siaj, M.; Larachi, F. Ionic liquids for CO2 capture—Development and progress. Chem. Eng. Process. Process Intensif. 2010, 49, 313–322. [Google Scholar] [CrossRef]
- Tomé, L.C.; Patinha, D.J.S.; Freire, C.S.R.; Rebelo, L.P.N.; Marrucho, I.M. CO2 separation applying ionic liquid mixtures: The effect of mixing different anions on gas permeation through supported ionic liquid membranes. RSC Adv. 2013, 3, 12220–12229. [Google Scholar] [CrossRef]
- Blanchard, L.A.; Gu, A.Z.; Brennecke, J.F. High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems. J. Phys. Chem. B 2001, 105, 2437–2444. [Google Scholar] [CrossRef]
- Magana, S.; Gain, O.; Gouanvé, F.; Espuche, E. Influence of different alkyl-methylimidazolium tetrafluoroborate ionic liquids on the structure of pebax® films. Consequences on thermal, mechanical, and water sorption and diffusion properties. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 811–824. [Google Scholar] [CrossRef]
- Hudiono, Y.C.; Carlisle, T.K.; LaFrate, A.L.; Gin, D.L.; Noble, R.D. Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. J. Membr. Sci. 2011, 370, 141–148. [Google Scholar] [CrossRef]
- Jomekian, B.A.; Bazooyar, R.M.; Behbahani, T.; Mohammadi, A. Kargari Ionic liquid-modified Pebax® 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4, N2 and H2. J. Membr. Sci. 2017, 524, 652–662. [Google Scholar] [CrossRef]
- Grigoryeva, O.; Fainleib, A.; Tolstov, A.; Pissis, P.; Spanoudaki, A.; Vatalis, A.; Delides, C. Thermal analysis of thermoplastic elastomers based on recycled polyethylenes and ground tyre rubber. J. Therm. Anal. 2006, 86, 229–233. [Google Scholar] [CrossRef]
- Farong, H.; Xueqiu, W.; Shijin, L. The Thermal Stability of Polyetherimide. Polym. Degrad. Stab. 1987, 18, 247–259. [Google Scholar] [CrossRef]
- Cho, C.; Nam, S.L.; de la Mata, A.P.; Harynuk, J.J.; Elias, A.L.; Chung, H.-J.; Dolez, P.I. Investigation of the accelerated thermal aging behaviorof polyetherimide and lifetime prediction at elevated temperature. J. Appl. Polym. Sci. 2022, 139, e51955. [Google Scholar] [CrossRef]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Polyetherimide Foams Filled with Low Content of Graphene Nanoplatelets Prepared by scCO2 Dissolution. Polymers 2019, 11, 328. [Google Scholar] [CrossRef]
- Magana, S.; Festin, N.; Fumagalli, M.; Chikh, L.; Gouanvé, F.; Mareau, V.; Gonon, L.; Fichet, O.; Espuche, E. Hydrophobic networks for advanced proton conducting membrane: Synthesis, transport properties and chemical stability. J. Membr. Sci. 2015, 494, 161–173. [Google Scholar] [CrossRef]
- Sood, R.; Iojoiu, C.; Espuche, E.; Gouanvé, F.; Mendil-Jakani, H.; Lyonnard, S. Influence of different perfluorinated anion based Ionic liquids on the intrinsic properties of Nafion®. J. Membr. Sci. 2015, 495, 445–456. [Google Scholar] [CrossRef]
- Singh, H.; Zhuang, S.; Nunna, B.B.; Lee, E.S. Thermal Stability and Potential Cycling Durability of Nitrogen-Doped Graphene Modified by Metal-Organic Framework for Oxygen Reduction Reactions. Catalysts 2018, 8, 607. [Google Scholar] [CrossRef]
- Cong, H.; Radosz, M.; Towler, B.F.; Shen, Y. Polymer–inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 2007, 55, 281–291. [Google Scholar] [CrossRef]
- Hao, L.; Li, P.; Yang, T.; Chung, T.S. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. J. Membr. Sci. 2013, 436, 221–231. [Google Scholar] [CrossRef]
- Deniz, S. Characterization and gas permeation properties of polyetherimide/zeolitic imidazolate framework 8 5 (PEI/ZIF-8) mixed matrix membranes. Int. J. Eng. Appl. Sci. 2012, 12, 1–11. [Google Scholar]
- Jusoh, N.; Yeong, Y.F.; Lau, K.K.; Shariff, A.M. Mixed Matrix Membranes Comprising of ZIF-8 Nanofillers for Enhanced Gas Transport Properties. Procedia Eng. 2016, 148, 1259–1265. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Kim, E.Y.; Kim, H.S.; Kim, D.; Kim, J.; Lee, P.S. Preparation of Mixed Matrix Membranes Containing ZIF-8 and UiO-66 for Multicomponent Light Gas Separation. Crystals 2019, 9, 15. [Google Scholar] [CrossRef] [Green Version]
Name | Abbreviation | Chemical Structure |
---|---|---|
Ultem 1000 | PEI | |
Basolite Z1200 | ZIF-8 | |
1-Ethyl-3-methyl imidazolium Tetrafluoroborate | [Emim][BF4] |
PHe (Barrer) | PCO2 (Barrer) | PH2 (Barrer) | |
---|---|---|---|
PEI | 9.2 | 1.8 | 7.9 |
PEI/2.5 IL | 8.6 | 1.2 | 7.4 |
PEI/7 IL | 9.1 | 1.5 | 8.1 |
PHe (Barrer) | PCO2 (Barrer) | PH2 (Barrer) | DCO2 ×10−9 (cm2/s) | SCO2 (ccSTP·cm/cmHg) | αH2/CO2 | |
---|---|---|---|---|---|---|
PEI | 9.2 | 1.8 | 7.9 | 1.6 | 0.11 | 4.4 |
PEI/10 ZIF-8 | 18.3 | 3.6 | 17.1 | 2.7 | 0.13 | 4.8 |
PEI/15 ZIF-8 | 19.7 | 3.7 | 18.3 | 2.9 | 0.12 | 5.0 |
PEI/20 ZIF-8 | 27.8 | 5.5 | 25.6 | 4.8 | 0.11 | 4.7 |
PEI/25 ZIF-8 | 36.2 | 6.8 | 30.0 | 6.7 | 0.10 | 4.4 |
PHe (Barrer) | PCO2 (Barrer) | PH2 (Barrer) | DCO2 ×10−9 (cm2/s) | SCO2 (ccSTP·cm/cmHg) | αH2/CO2 | |
---|---|---|---|---|---|---|
PEI/2.5 IL/10 ZIF-8 | 20 | 8.5 | 18 | 6.1 | 0.14 | 2.1 |
PEI/7 IL/10 ZIF-8 | 28.3 | 14 | 36.6 | 25 | 0.056 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zid, S.; Alcouffe, P.; Zinet, M.; Espuche, E. Mixed-Matrix Membranes Based on Polyetherimide, Metal–Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties. Polymers 2022, 14, 3489. https://doi.org/10.3390/polym14173489
Zid S, Alcouffe P, Zinet M, Espuche E. Mixed-Matrix Membranes Based on Polyetherimide, Metal–Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties. Polymers. 2022; 14(17):3489. https://doi.org/10.3390/polym14173489
Chicago/Turabian StyleZid, Sarra, Pierre Alcouffe, Matthieu Zinet, and Eliane Espuche. 2022. "Mixed-Matrix Membranes Based on Polyetherimide, Metal–Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties" Polymers 14, no. 17: 3489. https://doi.org/10.3390/polym14173489
APA StyleZid, S., Alcouffe, P., Zinet, M., & Espuche, E. (2022). Mixed-Matrix Membranes Based on Polyetherimide, Metal–Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties. Polymers, 14(17), 3489. https://doi.org/10.3390/polym14173489