High-Voltage FDS of Thermally Aged XLPE Cable and Its Correlation with Physicochemical Properties
Abstract
:1. Introduction
2. Experimental Setup
2.1. Sample Preparation
2.2. Measurements Carried Out
2.2.1. Macroscopic High-Voltage FDS Measurement
2.2.2. Microscopical Physicochemical Measurement
3. Results and Discussion
3.1. Microscopical Physicochemical Results
3.1.1. Test Results of Mechanical and Physicochemical Properties
3.1.2. Analysis of the Physicochemical Properties
3.2. High-Voltage FDS Results
3.3. Discussion of Experiment Results
3.3.1. Correlation Analysis of High-Voltage Dielectric and Physicochemical Properties
3.3.2. Discussion on Diagnosis Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamad, A.A.; Ghunem, R.A. A techno-economic framework for replacing aged XLPE cables in the distribution network. IEEE Trans. Power Del. 2020, 35, 2387–2393. [Google Scholar] [CrossRef]
- Diao, J.; Huang, X.; Jia, Q.; Liu, F.; Jiang, P. Thermoplastic isotactic polypropylene/ethylene-octene polyolefin copolymer nanocomposite for recyclable HVDC cable insulation. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1416–1429. [Google Scholar] [CrossRef]
- Zhu, X.; Yin, Y.; Wu, J.; Wang, X. Study on aging characteristics of XLPE cable insulation based on quantum chemical calculation. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1942–1950. [Google Scholar] [CrossRef]
- Nobrega, A.M.; Martinez, M.L.B.; de Queiroz, A.A.A. Investigation and analysis of electrical aging of XLPE insulation for medium voltage covered conductors manufactured in Brazil. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 628–640. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Wang, Q.; Zhang, X.; Ouyang, B.; Zhao, J. Accelerated inhomogeneous degradation of XLPE insulation caused by copper-rich impurities at elevated temperature. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1789–1797. [Google Scholar] [CrossRef]
- Ouyang, B.; Li, H.; Zhang, X.; Wang, S.; Li, J. The role of micro-structure changes on space charge distribution of XLPE during thermo-oxidative ageing. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3849–3859. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Yu, L.; Li, Y.; Gao, L. Effect of thermal stress on the space charge distribution of 160 kV HVDC cable insulation material. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1355–1364. [Google Scholar] [CrossRef]
- Zhang, Z.; Assala, P.; Wu, L. Residual life assessment of 110kV XLPE cable. Electr. Power Syst. Res. 2018, 163, 572–580. [Google Scholar] [CrossRef]
- Mahdipour, M.; Akbari, A.; Werle, P.; Borsi, H. Partial discharge localization on power cables using on-line transfer function. IEEE Trans. Power Deliv. 2019, 34, 1490–1498. [Google Scholar] [CrossRef]
- Fothergill, J.C.; Dodd, S.J.; Dissado, L.A.; Liu, T.; Nilsson, U.H. The measurement of very low conductivity and dielectric loss in XLPE cables: A possible method to detect degradation due to thermal aging. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1544–1553. [Google Scholar] [CrossRef] [Green Version]
- Al-Arainy, A.; Malik, N.H.; Qureshi, M.I.; Al-Saati, M.N. The performance of strippable and bonded screened medium-voltage XLPE-insulated cables under long-term accelerated aging. IEEE Trans. Power Deliv. 2007, 22, 744–751. [Google Scholar] [CrossRef]
- Lindea, E.; Verardi, L.; Fabianib, D.; Geddea, U.W. Dielectric spectroscopy as a condition monitoring technique for cable insulation based on crosslinked polyethylene. Polym. Test. 2015, 44, 135–142. [Google Scholar] [CrossRef]
- Jadav, R.B.; Ekanayake, C.; Saha, T.K. Understanding the impact of moisture and ageing of transformer insulation on frequency domain spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 369–379. [Google Scholar] [CrossRef]
- Gao, J.; Yang, L.; Wang, Y.; Liu, X.; Lv, Y.; Zheng, H. Condition diagnosis of transformer oil-paper insulation using dielectric response fingerprint characteristics. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1207–1218. [Google Scholar] [CrossRef]
- Kemari, Y.; Mekhaldi, A.; Teyssèdre, G.; Teguar, M. Correlations between structural changes and dielectric behavior of thermally aged XLPE. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1859–1866. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Hirai, N.; Ohki, Y. Effects of heat and gamma-rays on mechanical and dielectric properties of cross-linked polyethylene. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1998–2006. [Google Scholar] [CrossRef]
- Werelius, P. Development and Application of High Voltage Dielectric Spectroscopy for Diagnosis of Medium Voltage XLPE Cables. Ph.D. Dissertation, Department of Electrical Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden, 2001. [Google Scholar]
- Werelius, P.; Tharning, P.; Eriksson, R.; Holmgren, B.; Gafvert, U. Dielectric spectroscopy for diagnosis of water tree deterioration in XLPE cables. IEEE Trans. Dielectr. Electr. Insul. 2001, 8, 27–42. [Google Scholar]
- Pedersen, K.; Sedding, H.; Fenger, M.; Holboell, J.; Henriksen, M. Laboratory results from dielectric spectroscopy of field aged XLPE cables with respect to water trees. In Proceedings of the Conference Record of the 2006 IEEE International Symposium on Electrical Insulation, Toronto, ON, Canada, 11–14 June 2006; pp. 509–514. [Google Scholar]
- Densley, J.; Hvidsten, S.; Boone, W. Non-Destructive Water-Tree Detection in XLPE Cable Insulation. In Proceedings of the 8th International Conference on Insulated Power Cables, Paris, France, 19–23 June 2011. [Google Scholar]
- Given, M.J.; Fouracre, R.A.; MacGregor, S.J.; Judd, M.; Banford, H.M. Diagnostic dielectric spectroscopy methods applied to water-treed cable. IEEE Trans. Dielectr. Electr. Insul. 2001, 8, 917–920. [Google Scholar] [CrossRef]
- IEC 60502-2. Power cables with insulation and their accessories for rated voltages from 1kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV), Part 2: Cables for rated from 6 kV(Um = 7.2 kV) up to 30kV (Um = 36 kV). In Proceedings of the International Eletro-technical Commission(IEC), Geneva, Switzerland, February 2021. Available online: https://webstore.iec.ch/preview/info_iec60502-2%7Bed2.0%7Den_d.pdf (accessed on 28 July 2022).
- Mo, Z.; Zhang, H.; Zhang, J. The Structure and X Ray Diffraction of Crystalline Polymer; Science Press: Beijing, China, 2010. [Google Scholar]
- Roy, P.K.; Surekha, P.; Rajagopal, C. Effect of cobalt carboxylates on the photo-oxidative degradation of low-density polyethylene. Part-I. Polym. Degrad. Stab. 2006, 91, 1980–1988. [Google Scholar] [CrossRef]
- Jiqin, C.; Minxiong, C.; Jingshi, Z. Crystalline Defects; Zhejiang University Press: Zhejiang, China, 1992. [Google Scholar]
- Jonscher, A.K. The universal dielectric response and its physical significance. IEEE Trans. Dielectr. Electr. Insul. 1992, 27, 407–423. [Google Scholar] [CrossRef]
- Zaengl, W.S. Dielectric spectroscopy in time and frequency domain for HV power equipment. I. Theoretical considerations. IEEE Electr. Insul. Mag. 1998, 19, 5–19. [Google Scholar] [CrossRef]
- Hvidsten, S.; Ildstad, E.; Sletbak, J.; Faremo, H. Understanding water treeing mechanisms in the development of diagnostic test methods. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 754–760. [Google Scholar] [CrossRef]
- Zhou, K.; Zhao, W.; Tao, X. Toward understanding the relationship between insulation recovery and micro structure in water tree degraded XLPE cables. IEEE Trans. Dielectr. Electr. Insul. 2016, 20, 2135–2142. [Google Scholar] [CrossRef]
Aging Time | CI | FWHM | Crystallinity | Aging Stage | |
---|---|---|---|---|---|
(110) | (200) | ||||
0 h | 1 | 0.5372 | 1.4970 | 45.69% | – |
48 h | 1.05 | 0.5795 | 1.5668 | 45.95% | Early Stage |
96 h | 1.03 | 0.5436 | 1.5752 | 46.03% | |
192 h | 1.33 | 0.5630 | 1.5859 | 45.70% | Middle Stage |
384 h | 1.79 | 0.6188 | 1.7012 | 45.03% | |
768 h | 2.64 | 0.6921 | 1.7708 | 44.78% | Late Stage |
1536 h | 4.31 | 0.7334 | 1.9287 | 44.56% |
Aging Time | Aging Phenomenon | Aging Degree | Aging Stage | |||
---|---|---|---|---|---|---|
L1 | L2 | L3 | KU0 | SU0 | ||
0 h | 0.92 | 0.81 | 1.29 | 12.56 | 2.20 | – |
48 h | 2.65 | 0.93 | 0.98 | 6.23 | 2.48 | Early Stage |
96 h | 0.62 | 2.42 | 0.98 | 22.33 | 7.84 | |
192 h | 1.08 | 0.40 | 5.95 | 109.11 | 20.98 | Middle Stage |
384 h | 1.93 | 1.74 | 1.85 | 253.12 | 83.11 | |
768 h | 2.53 | 2.12 | 1.22 | 755.33 | 183.84 | Late Stage |
1536 h | 5.4 | 1.69 | 1.39 | 1625.89 | 417.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Sun, M.; Zhao, K.; Wang, X.; Xu, Q.; Wang, W.; Li, C. High-Voltage FDS of Thermally Aged XLPE Cable and Its Correlation with Physicochemical Properties. Polymers 2022, 14, 3519. https://doi.org/10.3390/polym14173519
Wang H, Sun M, Zhao K, Wang X, Xu Q, Wang W, Li C. High-Voltage FDS of Thermally Aged XLPE Cable and Its Correlation with Physicochemical Properties. Polymers. 2022; 14(17):3519. https://doi.org/10.3390/polym14173519
Chicago/Turabian StyleWang, Haoyue, Maolun Sun, Kaijie Zhao, Xiaowei Wang, Qilong Xu, Wei Wang, and Chengrong Li. 2022. "High-Voltage FDS of Thermally Aged XLPE Cable and Its Correlation with Physicochemical Properties" Polymers 14, no. 17: 3519. https://doi.org/10.3390/polym14173519
APA StyleWang, H., Sun, M., Zhao, K., Wang, X., Xu, Q., Wang, W., & Li, C. (2022). High-Voltage FDS of Thermally Aged XLPE Cable and Its Correlation with Physicochemical Properties. Polymers, 14(17), 3519. https://doi.org/10.3390/polym14173519