Copolymerization-Regulated Hydrogen Bonds: A New Routine for High-Strength Copolyamide 6/66 Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. PA6 and CoPAs Fiber Preparation
2.3. Measurement and Characterization
2.3.1. Mechanical Properties
2.3.2. In-Site Temperature-Variable FTIR Analysis
2.3.3. X-ray Diffraction Analysis
2.3.4. Thermal Properties
2.3.5. Two-Dimensional Spectroscopy Analysis
3. Results
3.1. Drawn Properties of PA6 and CoPAs As-Spun Fibers
3.2. Mechanical Properties of PA6 and CoPAs High-Tenacity Fibers
3.3. Crystallization Analysis of PA6 and CoPAs High-Tenacity Fibers
3.4. Hydrogen Bond Interactions in Polyamide by Using In-Site Temperature-Variable FTIR Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibb, B.C. The centenary (maybe) of the hydrogen bond. Nat. Chem. 2020, 12, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Hilger, C.; Stadler, R. New multiphase architecture from statistical copolymers by cooperative hydrogen bond formation. Macromolecules 1990, 23, 2095–2097. [Google Scholar] [CrossRef]
- Medhekar, N.V.; Ramasubramaniam, A.; Ruoff, R.S.; Shenoy, V.B. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 2010, 4, 2300–2306. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Vatankhah-Varnoosfaderani, M.; Zhou, J.; Li, Q.; Sheiko, S.S. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv. Mater. 2015, 27, 6899–6905. [Google Scholar] [CrossRef]
- Lugger, S.J.; Houben, S.J.; Foelen, Y.; Debije, M.G.; Schenning, A.P.; Mulder, D.J. Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chem. Rev. 2021, 122, 4946–4975. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, H.; Li, Y.; Meng, J.; Yao, Y.; Yao, C. Biomass polyamide elastomers based on hydrogen bonds with rapid self-healing properties. Eur. Polym. J. 2020, 133, 109802. [Google Scholar] [CrossRef]
- Vasanthan, N. Polyamide fiber formation: Structure, properties and characterization. In Handbook of Textile Fibre Structure; Woodhead Publishing Limited: Sawston, UK, 2009; pp. 232–256. [Google Scholar] [CrossRef]
- Eun, J.H.; Kim, D.H.; Lee, J.S. Effect of low melting temperature polyamide fiber-interlaced carbon fiber braid fabric on the mechanical performance and fracture toughness of CFRP laminates. Compos. Part A Appl. Sci. Manuf. 2020, 137, 105987. [Google Scholar] [CrossRef]
- Garcia, D.; Starkweather Jr, H.W. Hydrogen bonding in nylon 66 and model compounds. J. Polym. Sci. Polym. Phys. Ed. 1985, 23, 537–555. [Google Scholar] [CrossRef]
- Schroeder, L.; Cooper, S.L. Hydrogen bonding in polyamides. J. Appl. Phys. 1976, 47, 4310–4317. [Google Scholar] [CrossRef]
- Dai, L.; Ying, L. Infrared spectroscopic investigation of hydrogen bonding in EVOH containing PVA fibers. Macromol. Mater. Eng. 2002, 287, 509–514. [Google Scholar] [CrossRef]
- Murthy, N.S. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 1763–1782. [Google Scholar] [CrossRef]
- Arimoto, H.; Ishibashi, M.; Hirai, M.; Chatani, Y. Crystal structure of the γ-form of nylon 6. J. Polym. Sci. Part A Gen. Pap. 1965, 3, 317–326. [Google Scholar] [CrossRef]
- Hasani, Z.; Youssefi, M.; Borhani, S.; Mallakpour, S. Structure and properties of nylon-6/amino acid modified nanoclay composite fibers. J. Text. Inst. 2019, 110, 1336–1342. [Google Scholar] [CrossRef]
- Zheng, X.; Lin, Q.; Jiang, P.; Li, Y.; Li, J. Ionic liquids incorporating polyamide 6: Miscibility and physical properties. Polymers 2018, 10, 562. [Google Scholar] [CrossRef] [PubMed]
- Dawelbeit, A.; Yu, M. Tentative Confinement of Ionic Liquids in Nylon 6 Fibers: A Bridge between Structural Developments and High-Performance Properties. ACS Omega 2021, 6, 3535–3547. [Google Scholar] [CrossRef]
- Murase, S.; Matsuda, T.; Hirami, M. Intrinsic Birefringence of γ-Form Crystal of Nylon 6: Application to Orientation Development in High-Speed Spun Fibers of Nylon 6. Macromol. Mater. Eng. 2001, 286, 48–51. [Google Scholar] [CrossRef]
- Kunugi, T.; Chida, K.; Suzuki, A. Preparation of high-modulus nylon 6 fibers by vibrating hot drawing and zone annealing. J. Appl. Polym. Sci. 1998, 67, 1993–2000. [Google Scholar] [CrossRef]
- Suzuki, A.; Hasegawa, T. High temperature zone-drawing of nylon 66 microfiber prepared by CO2 laser-thinning. J. Appl. Polym. Sci. 2006, 101, 42–47. [Google Scholar] [CrossRef]
- Najafi, M.; Avci, H.; Kotek, R. High-performance filaments by melt spinning low viscosity nylon 6 using horizontal isothermal bath process. Polym. Eng. Sci. 2015, 55, 2457–2464. [Google Scholar] [CrossRef]
- Yoon, H. Melt Spinning of High Performance Poly (ethylene terephthalate)(PET) Multifilament Yarn via Utilizing a Horizontal Isothermal Bath (HIB) in the Threadline; North Carolina State University: Raleigh, NC, USA, 2012. [Google Scholar]
- Oh, T.H.; Shin, D.S.; Im, Y.; Seo, Y.; Nathanael, A.; Kim, Y.J.; Jeon, J.H.; Kim, K.H.; Jung, J.-H.; Choi, I.S. Experimental and Molecular Dynamics Studies on Tensile Properties of Nylon 6/Graphene Composite Filaments. Fibers Polym. 2022, 23, 1684–1691. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Q.; Yuan, R.; Chen, S.; Yu, J.; Li, F.; Chen, L. Study on preparation and structure and properties of high-strength nylon 6 filament. China Synth. Fiber Ind. 2019, 42, 31–35. [Google Scholar]
- Xing, Y.; Li, X.; Chen, X.; Yan, Y. Influence of cross air blow speed on structure and properties of high-strength polyamide 6 fiber. China Synth. Fiber Ind. 2021, 44, 1–5. [Google Scholar]
- Chen, Y.-H.; Chen, C.-W.; Way, T.-F.; Rwei, S.-P. Synthesis and characterization of low-temperature polyamide 6 (PA6) copolyamides used as hot melt adhesives and derived from the comonomer of novel aliphatic diamine bis (2-aminoethyl) adipamide and adipic acid. Int. J. Adhes. Adhes. 2020, 101, 102619. [Google Scholar] [CrossRef]
- Chen, Y.H.; Lee, Y.H.; Rwei, S.P. Synthesis and characterization of trace aromatic copolyamide 6 with tunable mechanical and viscoelastic behavior. J. Appl. Polym. Sci. 2022, 139, 51649. [Google Scholar] [CrossRef]
- Lin, C.; Zou, F.; Fernández-Ronco, M.P.; Yan, Y.; Hufenus, R. Melting behavior and non-isothermal crystallization kinetics of copolyamide 6/12. Polym. Cryst. 2019, 2, e10054. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Ranganathan, P.; Chen, C.-W.; Lee, Y.-H.; Rwei, S.-P. Effect of bis (2-Aminoethyl) adipamide/adipic acid segment on polyamide 6: Crystallization kinetics study. Polymers 2020, 12, 1067. [Google Scholar] [CrossRef]
- Su, G.; Zhou, T.; Liu, X.; Zhang, Y. Two-step volume phase transition mechanism of poly (N-vinylcaprolactam) hydrogel online-tracked by two-dimensional correlation spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 27221–27232. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, T.; Su, G.; Li, Y.; Zhang, A. Understanding the crystallization behavior of polyamide 6/polyamide 66 alloys from the perspective of hydrogen bonds: Projection moving-window 2D correlation FTIR spectroscopy and the enthalpy. RSC Adv. 2016, 6, 87405–87415. [Google Scholar] [CrossRef]
- Hufenus, R.; Yan, Y.; Dauner, M.; Kikutani, T. Melt-spun fibers for textile applications. Materials 2020, 13, 4298. [Google Scholar] [CrossRef]
- Litchfield, D.W.; Baird, D.G. The role of nanoclay in the generation of poly (ethylene terephthalate) fibers with improved modulus and tenacity. Polymer 2008, 49, 5027–5036. [Google Scholar] [CrossRef]
- Tang, J.; Xu, B.; Xi, Z.; Pan, X.; Zhao, L. Controllable crystallization behavior of nylon-6/66 copolymers based on regulating sequence distribution. Ind. Eng. Chem. Res. 2018, 57, 15008–15019. [Google Scholar] [CrossRef]
- Kinoshita, Y. An investigation of the structures of polyamide series. Die Makromol. Chem. Macromol. Chem. Phys. 1959, 33, 1–20. [Google Scholar] [CrossRef]
- Li, Y.; Goddard, W.A. Nylon 6 crystal structures, folds, and lamellae from theory. Macromolecules 2002, 35, 8440–8455. [Google Scholar] [CrossRef]
- Ito, M.; Mizuochi, K.; Kanamoto, T. Effects of crystalline forms on the deformation behaviour of nylon-6. Polymer 1998, 39, 4593–4598. [Google Scholar] [CrossRef]
- Jia, F.; Mao, J.-L.; Yang, X.-Y.; Ma, Y.; Yao, C. Thermal, physical and mechanical properties of hydrogenated dimer acid-based Nylon 636/Nylon 66 copolymers. Chin. Chem. Lett. 2013, 24, 654–658. [Google Scholar] [CrossRef]
- Skrovanek, D.J.; Howe, S.E.; Painter, P.C.; Coleman, M.M. Hydrogen bonding in polymers: Infrared temperature studies of an amorphous polyamide. Macromolecules 1985, 18, 1676–1683. [Google Scholar] [CrossRef]
- Hou, L.; Wu, P.-y. Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers. Acta Polym. Sin. 2022, 53, 522–538. [Google Scholar]
- Yu, Y.W.; Shu, K.W.; Zhong, L.; Zeng, C.C.; Zhang, D. Preparation and properties of nylon 6/66 copolymer with a small proportion of hexamethylene adipamide salt. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch SZ, Switzerland, 2014; pp. 463–466. [Google Scholar]
- Zhou, J.; Wang, Q.; Jia, C.; Innocent, M.T.; Pan, W.; Xiang, H.; Zhu, M. Molecular weight discrete distribution-induced orientation of high-strength copolyamide fibers: Effects of component proportion and molecular weight. Macromolecules 2021, 54, 7529–7539. [Google Scholar] [CrossRef]
- Rotter, G.; Ishida, H. FTIR separation of nylon-6 chain conformations: Clarification of the mesomorphous and γ-crystalline phases. J. Polym. Sci. Part B Polym. Phys. 1992, 30, 489–495. [Google Scholar] [CrossRef]
- Quarti, C.; Milani, A.; Civalleri, B.; Orlando, R.; Castiglioni, C. Ab initio calculation of the crystalline structure and IR spectrum of polymers: Nylon 6 polymorphs. J. Phys. Chem. B 2012, 116, 8299–8311. [Google Scholar] [CrossRef]
- Lin, L.; Argon, A. Deformation resistance in oriented nylon 6. Macromolecules 1992, 25, 4011–4024. [Google Scholar] [CrossRef]
Sample | DSC of HT | XRD of AS | XRD of HT | ||||||
---|---|---|---|---|---|---|---|---|---|
Tonset /°C | Tpeak /°C | ΔTm /°C | ΔHm /J·g−1 | fc /% | fc /% | Crystal Form | fc /% | Crystal Form | |
PA6 | 211.7 | 222.3 | 8.43 | 84.6 | 36.8 | 47.45 | γ | 67.6 | α |
CoPA-4 | 204.2 | 215.5 | 10.3 | 76.3 | 33.2 | 40.65 | γ | 61.2 | α |
CoPA-6 | 201.6 | 212.5 | 10.5 | 76.1 | 33.1 | 29.80 | γ | 56.7 | α |
CoPA-8 | 193.8 | 209.8 | 11.3 | 70.3 | 30.5 | 25.44 | γ | 46.2 | α |
CoPA-12 | 183.6 | 200.9 | 13.4 | 63.6 | 27.6 | 24.15 | γ | 41.9 | α |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Song, M.; Li, X.; Chen, J.; Liang, T.; Chen, X.; Yan, Y. Copolymerization-Regulated Hydrogen Bonds: A New Routine for High-Strength Copolyamide 6/66 Fibers. Polymers 2022, 14, 3517. https://doi.org/10.3390/polym14173517
Wang Z, Song M, Li X, Chen J, Liang T, Chen X, Yan Y. Copolymerization-Regulated Hydrogen Bonds: A New Routine for High-Strength Copolyamide 6/66 Fibers. Polymers. 2022; 14(17):3517. https://doi.org/10.3390/polym14173517
Chicago/Turabian StyleWang, Zichao, Ming Song, Xilin Li, Jizong Chen, Tiexian Liang, Xin Chen, and Yurong Yan. 2022. "Copolymerization-Regulated Hydrogen Bonds: A New Routine for High-Strength Copolyamide 6/66 Fibers" Polymers 14, no. 17: 3517. https://doi.org/10.3390/polym14173517
APA StyleWang, Z., Song, M., Li, X., Chen, J., Liang, T., Chen, X., & Yan, Y. (2022). Copolymerization-Regulated Hydrogen Bonds: A New Routine for High-Strength Copolyamide 6/66 Fibers. Polymers, 14(17), 3517. https://doi.org/10.3390/polym14173517