Thermophysical Molding Treatments on Thick Wood Veneer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Evaluation of the Properties of Thick TPM-Treated Veneer
2.2.1. Roughness
2.2.2. Contact Angle Measurement
2.2.3. Wettability
2.3. XPS Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Roughness of TPM-Treated Veneers
3.2. Influence of TPM Parameters on the Wetting Performance of the Veneer Surfaces
3.3. Chemical Components on the Surfaces of the TPM-Treated Veneers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shmulsky, R.; Jones, P.D. Forest Products and Wood Science: An Introduction, 3rd ed.; Iowa State University: Ames, IA, USA, 1996; ISBN 0-8138-2256-4. [Google Scholar]
- Candan, Z.; Büyüksari, U.; Korkut, S.; Unsal, O.; Çakicier, N. Wettability and Surface Roughness of Thermally Modified Plywood Panels. Ind. Crops Prod. 2012, 36, 434–436. [Google Scholar] [CrossRef]
- Erdil, Y.Z.; Kasal, A.; Zhang, J.; Efe, H.; Dizei, T. Comparison of Mechanical Properties of Solid Wood and Laminated Veneer Lumber Fabricated from Turkish Beech, Scotch Pine, and Lombardy Poplar. For. Prod. J. 2009, 59, 55–60. [Google Scholar]
- Yanglun, Y.; Fandan, M.; Wenji, Y. Manufacturing Technology, Key Equipment and Performance of Wood-Based Composites Made from Thick Veneers. China Wood Ind. 2016, 30, 31–34. [Google Scholar]
- Yunshui, Y. Study on Preparation of Bamboo Composite Plywood. China For. Prod. Ind. 2002, 29, 21–23. [Google Scholar]
- Navi, P.; Heger, F. Combined Densification and Thermo-Hydro-Mechanical Processing of Wood. MRS Bull. 2004, 29, 332–336. [Google Scholar] [CrossRef]
- Sandberg, D.; Haller, P.; Navi, P. Thermo-Hydro and Thermo-Hydro-Mechanical Wood Processing: An Opportunity for Future Environmentally Friendly Wood Products. Wood Mater. Sci. Eng. 2013, 8, 64–88. [Google Scholar] [CrossRef]
- Tanahashi, M.; Tamabuchi, K.; Goto, T.; Aoki, T.; Karina, M.; Higuchi, T. Characterization of Steam-Exploded Wood. II. Chemical Changes of Wood Components by Steam Explosion. Wood Res. 1988, 75, 1–12. [Google Scholar]
- Kutnar, A.; Kamke, F.A. Influence of Temperature and Steam Environment on Set Recovery of Compressive Deformation of Wood. Wood Sci. Technol. 2012, 46, 953–964. [Google Scholar] [CrossRef]
- Ito, Y.; Tanahashi, M.; Shigematsu, M.; Shinoda, Y. Compressive-Molding of Wood by High-Pressure Steam-Treatment: Part 2. Mechanism of Permanent Fixation. Holzforschung 1998, 52, 217–221. [Google Scholar] [CrossRef]
- Fu, Z.; Zhou, F.; Gao, X.; Weng, X.; Zhou, Y. Assessment of Mechanical Properties Based on the Changes of Chromatic Values in Heat Treatment Wood. Meas. J. Int. Meas. Confed. 2020, 152, 107215. [Google Scholar] [CrossRef]
- Shi, J.L.; Kocaefe, D.; Zhang, J. Mechanical Behaviour of Québec Wood Species Heat-Treated Using ThermoWood Process. Holz als Roh-und Werkst. 2007, 65, 255–259. [Google Scholar] [CrossRef]
- Kocaefe, D.; Poncsak, S.; Tang, J.; Bouazara, M. Effect of Heat Treatment on the Mechanical Properties of North American Jack Pine: Thermogravimetric Study. J. Mater. Sci. 2010, 45, 681–687. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Cao, J.; Sun, W. Correlation between Dynamic Wetting Behavior and Chemical Components of Thermally Modified Wood. Appl. Surf. Sci. 2015, 324, 332–338. [Google Scholar] [CrossRef]
- Guo, J.; Rennhofer, H.; Yin, Y.; Lichtenegger, H.C. The Influence of Thermo-Hygro-Mechanical Treatment on the Micro- and Nanoscale Architecture of Wood Cell Walls Using Small- and Wide-Angle X-ray Scattering. Cellulose 2016, 23, 2325–2340. [Google Scholar] [CrossRef]
- Ulker, O.; Imirzil, O.; Burdurlu, E. The Effect of Densification Temperature on Some Physical Ans Mechanical Properties of Scots Pine (Pinus sylvestris L.). BioResources 2012, 7, 5581–5592. [Google Scholar] [CrossRef]
- Bekhta, P.; Krystofiak, T. The Influence of Short-Term Thermo-Mechanical Densification on the Surface Wettability of Wood Veneers. Maderas Cienc. Tecnol. 2016, 18, 79–90. [Google Scholar] [CrossRef]
- Kamperidou, V.; Aidinidis, E.; Barboutis, I. Impact of Structural Defects on the Surface Quality of Hardwood Species Sliced Veneers. Appl. Sci. 2020, 10, 6265. [Google Scholar] [CrossRef]
- Santoni, I.; Pizzo, B. Effect of Surface Conditions Related to Machining and Air Exposure on Wettability of Different Mediterranean Wood Species. Int. J. Adhes. Adhes. 2011, 31, 743–753. [Google Scholar] [CrossRef]
- Nussbaum, R.M.; Sterley, M. The Effect of Wood Extractive Content on Glue Adhesion and Surface Wettability of Wood. Wood Fiber Sci. 2002, 34, 57–71. [Google Scholar]
- De Moura, L.F.; Hernández, R.E. Evaluation of Varnish Coating Performance for Three Surfacing Methods on Sugar Maple Wood. For. Prod. J. 2006, 56, 130–136. [Google Scholar]
- Mohammed-Ziegler, I.; Oszlánczi, Á.; Somfai, B.; Hórvölgyi, Z.; Pászli, I.; Holmgren, A.; Forsling, W. Surface Free Energy of Natural and Surface-Modified Tropical and European Wood Species. J. Adhes. Sci. Technol. 2004, 18, 687–713. [Google Scholar] [CrossRef]
- van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Interfacial Lifshitz—van Der Waals and Polar Interactions in Macroscopic Systems. Chem. Rev. 1988, 88, 927–941. [Google Scholar] [CrossRef]
- Nguila Inari, G.; Petrissans, M.; Lambert, J.; Ehrhardt, J.J.; Gérardin, P. XPS Characterization of Wood Chemical Composition after Heat-Treatment. Surf. Interface Anal. 2006, 38, 1336–1342. [Google Scholar] [CrossRef]
- Kocaefe, D.; Huang, X.; Kocaefe, Y.; Boluk, Y. Quantitative Characterization of Chemical Degradation of Heat-Treated Wood Surfaces during Artificial Weathering Using XPS. Surf. Interface Anal. 2013, 45, 639–649. [Google Scholar] [CrossRef]
- Aytin, A.; Korkut, S. Effect of Thermal Treatment on the Swelling and Surface Roughness of Common Alder and Wych Elm Wood. J. For. Res. 2016, 27, 225–229. [Google Scholar] [CrossRef]
- Korkut, D.S.; Guller, B. The Effects of Heat Treatment on Physical Properties and Surface Roughness of Red-Bud Maple (Acer trautvetteri Medw.) Wood. Bioresour. Technol. 2008, 99, 2846–2851. [Google Scholar] [CrossRef]
- Šernek, M.; Kamke, F.A.; Glasser, W.G. Comparative Analysis of Inactivated Wood Surface. Holzforschung 2004, 58, 22–31. [Google Scholar] [CrossRef]
- Kocaefe, D.; Poncsak, S.; Doré, G.; Younsi, R. Effect of Heat Treatment on the Wettability of White Ash and Soft Maple by Water. Holz Roh-und Werkst. 2008, 66, 355–361. [Google Scholar] [CrossRef]
- Fucheng, B.; Zheng, W.; Wenjing, G. Study on the Surface Properties of Poplar and Chinese Fir Wood. Sci. Silvae Sin. 2004, 40, 131–136. [Google Scholar]
- Huang, X.; Kocaefe, D.; Kocaefe, Y.; Boluk, Y.; Pichette, A. Study of the Degradation Behavior of Heat-Treated Jack Pine (Pinus banksiana) under Artificial Sunlight Irradiation. Polym. Degrad. Stab. 2012, 97, 1197–1214. [Google Scholar] [CrossRef]
- Alén, R.; Kotilainen, R.; Zaman, A. Thermochemical Behavior of Norway Spruce (Picea abies) at 180–225 °C. Wood Sci. Technol. 2002, 36, 163–171. [Google Scholar] [CrossRef]
- Talviste, R.; Galmiz, O.; Stupavská, M.; Ráhel’, J. Effect of DCSBD Plasma Treatment Distance on Surface Characteristics of Wood and Thermally Modified Wood. Wood Sci. Technol. 2020, 54, 651–665. [Google Scholar] [CrossRef]
- Chu, D.; Xue, L.; Zhang, Y.; Kang, L.; Mu, J. Surface Characteristics of Poplar Wood with High-Temperature Heat Treatment: Wettability and Surface Brittleness. BioResources 2016, 11, 6948–6967. [Google Scholar] [CrossRef]
- Nzokou, P.; Kamdem, D.P. X-ray Photoelectron Spectroscopy Study of Red Oak-(Quercus rubra), Black Cherry-(Prunus serotina) and Red Pine-(Pinus resinosa) Extracted Wood Surfaces. Surf. Interface Anal. 2005, 37, 689–694. [Google Scholar] [CrossRef]
- Ardelean, H.; Petit, S.; Laurens, P.; Marcus, P.; Arefi-Khonsari, F. Effects of Different Laser and Plasma Treatments on the Interface and Adherence between Evaporated Aluminium and Polyethylene Terephthalate Films: X-ray Photoemission, and Adhesion Studies. Appl. Surf. Sci. 2005, 243, 304–318. [Google Scholar] [CrossRef]
- Nishimiya, K.; Hata, T.; Imamura, Y.; Ishihara, S. Analysis of Chemical Structure of Wood Charcoal by X-ray Photoelectron Spectroscopy. J. Wood Sci. 1998, 44, 56–61. [Google Scholar] [CrossRef]
Parameters | Temperature (°C) | Duration (min) | ||||||
---|---|---|---|---|---|---|---|---|
160 | 170 | 180 | 190 | 5 | 8 | 11 | 14 | |
γ (mJ/m2) | 45.54 | 33.61 | 20.74 | 5.60 | 25.62 | 20.74 | 10.42 | 1.61 |
γLW (mJ/m2) | 30.02 | 29.14 | 26.44 | 25.78 | 26.98 | 26.44 | 24.97 | 21.99 |
γAB (mJ/m2) | 15.52 | 4.47 | −5.70 | −20.19 | −1.35 | −5.70 | −14.55 | −20.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Qi, Y.; Zhu, R.; Ma, H.; Zhang, Y.; Yu, W. Thermophysical Molding Treatments on Thick Wood Veneer. Polymers 2022, 14, 3516. https://doi.org/10.3390/polym14173516
Ji Y, Qi Y, Zhu R, Ma H, Zhang Y, Yu W. Thermophysical Molding Treatments on Thick Wood Veneer. Polymers. 2022; 14(17):3516. https://doi.org/10.3390/polym14173516
Chicago/Turabian StyleJi, Yaohui, Yue Qi, Rongxian Zhu, Hongxia Ma, Yahui Zhang, and Wenji Yu. 2022. "Thermophysical Molding Treatments on Thick Wood Veneer" Polymers 14, no. 17: 3516. https://doi.org/10.3390/polym14173516
APA StyleJi, Y., Qi, Y., Zhu, R., Ma, H., Zhang, Y., & Yu, W. (2022). Thermophysical Molding Treatments on Thick Wood Veneer. Polymers, 14(17), 3516. https://doi.org/10.3390/polym14173516