Viscoelastic and Thermal Properties of Styrene Modified Fir Wood
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Wood Modification
2.3. Characterisation
2.3.1. FTIR-ATR Spectroscopy
2.3.2. Dynamic Mechanical Analysis (DMA)
2.3.3. Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. FTIR-ATR Spectroscopy
3.2. Thermomechanical Behaviour of Fir Wood
3.3. Thermal Degradation Behaviour of Fir Wood
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stokke, D.D.; Gardner, D.J. Fundamental aspects of wood as a component of thermoplastic composites. J. Vinyl Addit. Technol. 2003, 9, 96–104. [Google Scholar] [CrossRef]
- Sjöström, E. Wood Chemistry, Fundamentals and Applications; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Kerr, A.J.; Goring, D.A.I. The ultrastructural arrangement of the wood cell wall. Cellul. Chem. Technol. 1975, 9, 536–573. [Google Scholar]
- Rowell, R.M. Chemical modification of wood. In Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 537–598. [Google Scholar]
- Soula, M.; Samyn, F.; Duquesne, S.; Landry, V. Innovative Polyelectrolyte Treatment to Flame-Retard Wood. Polymers 2021, 13, 2884. [Google Scholar] [CrossRef]
- Rowell, R.M. Understanding Wood Surface Chemistry and Approaches to Modification: A Review. Polymers 2021, 13, 2558. [Google Scholar] [CrossRef]
- Jirouš-Rajković, V.; Miklečić, J. Enhancing Weathering Resistance of Wood—A Review. Polymers 2021, 13, 1980. [Google Scholar] [CrossRef]
- Nopens, M.; Sazama, U.; König, S.; Kaschuro, S.; Krause, A.; Fröba, M. Determination of mesopores in the wood cell wall at dry and wet state. Sci. Rep. 2020, 10, 9543. [Google Scholar] [CrossRef]
- Turkulin, H.; Sell, J. Durability of wooden facades Part 1: Physical and structural protection. Drv. Ind. 2002, 53, 33–48. [Google Scholar]
- Kutnar, A.; Widmann, R.; Bremaud, I. Preliminary studies for use of dynamic mechanical analysis (DMA) to verify intensity of thermal wood modifications. Int. Wood Prod. J. 2013, 4, 158–165. [Google Scholar] [CrossRef]
- Humar, M.; Lesar, B. Efficacy of Linseed- and Tung-Oil-Treated Wood against Wood-Decay Fungi and Water Uptake. Int. Biodeterior. Biodegrad. 2013, 85, 223–227. [Google Scholar] [CrossRef]
- Fodor, F.; Lankveld, C.; Németh, R. Testing Common Hornbeam (Carpinus betulus L.) Acetylated with the Accoya Method under Industrial Conditions. iForest 2017, 10, 948–954. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, M.; Pelit, H.; Akcay, C.; Cakicier, N. Surface Properties of Tannin-Impregnated and Varnished Beech Wood after Exposure to Accelerated Weathering. Color. Technol. 2017, 133, 334–340. [Google Scholar] [CrossRef]
- Kielmann, B.C.; Butter, K.; Mai, C. Modification of Wood with Formulations of Phenolic Resin and Iron-Tannin-Complexes to Improve Material Properties and Expand Colour Variety. Eur. J. Wood Prod. 2018, 76, 259–267. [Google Scholar] [CrossRef]
- Li, W.; Chen, L.; Li, X. Comparison of physical-mechanical and mould-proof properties of furfurylated and DMDHEU-modified wood. BioResources 2019, 14, 9628–9644. [Google Scholar] [CrossRef]
- Guo, D.; Shen, X.; Fu, F.; Yang, S.; Li, G.; Chu, F. Improving physical properties of wood–polymer composites by building stable interface structure between swelled cell walls and hydrophobic polymer. Wood Sci. Technol. 2021, 55, 1401–1417. [Google Scholar] [CrossRef]
- Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules 1995, 28, 1721–1723. [Google Scholar] [CrossRef]
- Wang, J.S.; Matyjaszewski, K. Controlled/“living” radical polymerisation. Atom transfer radical polymerisation in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614–5615. [Google Scholar] [CrossRef]
- Chiefari, J.; Chong, Y.K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.T.; Mayadunne, R.T.A.; Meijs, G.F.; Moad, C.L.; Moad, G.; et al. Living free-radical polymerisation by reversible addition—Fragmentation chain transfer: The RAFT process. Macromolecules 1998, 31, 5559–5562. [Google Scholar] [CrossRef]
- Cabane, E.; Keplinger, T.; Merk, V.; Hass, P.; Burgert, I. Renewable and Functional Wood Materials by Grafting Polymerization Within Cell Walls. ChemSusChem 2014, 7, 1020–1025. [Google Scholar] [CrossRef]
- Devi, R.R.; Maji, T.K.; Banerjee, A.N. Studies on dimensional stability and thermal properties of rubber wood chemically modified with styrene and glycidyl methacrylate. J. Appl. Polym. Sci. 2004, 93, 1938–1945. [Google Scholar] [CrossRef]
- ISO 13061-1; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 1: Determination of Moisture content for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- Fackler, K.; Stevanic, J.S.; Ters, T.; Hinterstoisser, B.; Schwanninger, M.; Salmén, L. FT-IR imaging microscopy to localise and characterise simultaneous and selective white-rot decay within spruce wood cells. Holzforschung 2011, 65, 411–420. [Google Scholar] [CrossRef]
- Pandey, K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Rajisha, K.R.; Deepa, B.; Pothan, L.A.; Thomas, S. Thermomechanical and spectroscopic characterisation of natural fibre composites. In Woodhead Publishing Series in Composites Science and Engineering, Interface Engineering of Natural Fibre Composites for Maximum Performance; Zafeiropoulos, N.E., Ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 241–274. [Google Scholar] [CrossRef]
- Hrabalova, M.; Gregorova, A.; Wimmer, R.; Sedlarik, V.; Machovsky, M.; Mundigler, N. Effect of Wood Flour Loading and Thermal Annealing on Viscoelastic Properties of Poly(lactic acid) Composite Films. J. Appl. Polym. Sci. 2010, 118, 1534–1540. [Google Scholar] [CrossRef]
- Olsson, A.-M.; Salmén, L. The effect of lignin composition on the viscoelastic properties of wood. Nord. Pulp Pap. Res. J. 1997, 12, 140–144. [Google Scholar] [CrossRef]
- Salmén, L. Micromechanical understanding of the cell-wall structure. Comptes Rendus Biol. 2004, 327, 873–880. [Google Scholar] [CrossRef]
- Islam, M.S.; Hamdan, S.; Talib, Z.A.; Ahmed, A.S.; Rahman, M.R. Tropical wood polymer nanocomposite (WPNC): The impact of nanoclay on dynamic mechanical thermal properties. Compos. Sci. Technol. 2012, 72, 1995–2001. [Google Scholar] [CrossRef]
- Sun, N.; Das, S.; Fraizer, C.E. Dynamic mechanical analysis of dry wood: Linear viscoelastic response region and effects of minor moisture changes. Holzforschung 2007, 61, 28–33. [Google Scholar] [CrossRef]
- Chow, S.Z.; Pickeles, K.J. Thermal softening and degradation of wood and bark. Wood Fiber Sci. 1971, 3, 166–178. [Google Scholar]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
Fir Wood | Temperature (°C) | Amplitude (mm) | E′ (GPa) | Tg from E″ of Wood (°C) | Tg from tan δ of Wood (°C) | Tg from E″ PS (°C) | Tg from tan δ PS (°C) |
---|---|---|---|---|---|---|---|
Unmodified | |||||||
E′ initial = 15.5 | |||||||
Sample 1 | −50 to 150 | 0.3 | E′ final = 11.5 | 93.1 | 107.4 | - | - |
E′ (40 °C) = 14.8 | |||||||
E′ initial = 13.0 | |||||||
Sample 2 | −50 to 150 | 0.4 | E′ final = 8.7 | 89.6 | 104.9 | - | - |
E′ (40 °C) = 12.0 | |||||||
Modified | |||||||
E′ initial = 16.3 | |||||||
Sample 1 | −50 to 150 | 0.4 | E′ final = 10.3 | 80.6 | 77.9 | 123.8 | 124.4 |
E′ (40 °C) = 15.0 | |||||||
E′ initial = 16.8 | |||||||
Sample 2 | −50 to 150 | 0.3 | E′ final = 12.0 | 83.7 | 79.8 | 125.0 | 125.2 |
E′ (40 °C) = 15.2 |
Fir Wood | Ti (°C) | Tf (°C) | Tmax1 (°C) | Tmax2 (°C) | Tmax3 (°C) | Residue at 800 °C (%) |
---|---|---|---|---|---|---|
Unmodified | 289.3 | 400.4 | 72.2 | 379.9 | - | 17.27 |
Modified | 312.3 | 423.5 | 70.1 | 377.0 | 440.3 | 19.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jambreković, B.; Govorčin Bajsić, E.; Španić, N.; Sedlar, T.; Sinković, T. Viscoelastic and Thermal Properties of Styrene Modified Fir Wood. Polymers 2022, 14, 786. https://doi.org/10.3390/polym14040786
Jambreković B, Govorčin Bajsić E, Španić N, Sedlar T, Sinković T. Viscoelastic and Thermal Properties of Styrene Modified Fir Wood. Polymers. 2022; 14(4):786. https://doi.org/10.3390/polym14040786
Chicago/Turabian StyleJambreković, Branimir, Emi Govorčin Bajsić, Nikola Španić, Tomislav Sedlar, and Tomislav Sinković. 2022. "Viscoelastic and Thermal Properties of Styrene Modified Fir Wood" Polymers 14, no. 4: 786. https://doi.org/10.3390/polym14040786
APA StyleJambreković, B., Govorčin Bajsić, E., Španić, N., Sedlar, T., & Sinković, T. (2022). Viscoelastic and Thermal Properties of Styrene Modified Fir Wood. Polymers, 14(4), 786. https://doi.org/10.3390/polym14040786