Experimental Study of the Dynamic and Static Compression Mechanical Properties of Closed-Cell PVC Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Quasi-Static Compression Testing
2.3. High Strain Rate Compression Testing
2.4. Microstructural Observations and Imaging
3. Results and Discussion
3.1. Foam Microstructures
3.2. Foam Compressive Mechanical Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Shamary, A.K.J.; Karakuzu, R.; Özdemir, O. Low-velocity impact response of sandwich composites with different foam core configurations. J. Sandw. Struct. Mater. 2016, 18, 754–768. [Google Scholar] [CrossRef]
- Feng, D.; Aymerich, F. Effect of core density on the low-velocity impact response of foam-based sandwich composites. Compos. Struct. 2020, 239, 112040. [Google Scholar] [CrossRef]
- Mohammadiha, O.; Beheshti, H.; Aboutalebi, F.H. Multi-objective optimisation of functionally graded honeycomb filled crash boxes under oblique impact loading. Int. J. Crashworthiness 2015, 20, 44–59. [Google Scholar] [CrossRef]
- Abdullah, N.; Sani, M.; Salwani, M.; Husain, N. A review on crashworthiness studies of crash box structure. Thin-Walled Struct. 2020, 153, 106795. [Google Scholar] [CrossRef]
- Zhang, S.; Villavicencio, R.; Zhu, L.; Pedersen, P.T. Impact mechanics of ship collisions and validations with experimental results. Mar. Struct. 2017, 52, 69–81. [Google Scholar] [CrossRef]
- Marx, J.C.; Robbins, S.J.; Grady, Z.A.; Palmieri, F.L.; Wohl, C.J.; Rabiei, A. Polymer infused composite metal foam as a potential aircraft leading edge material. Appl. Surf. Sci. 2020, 505, 144114. [Google Scholar] [CrossRef]
- Christensen, R.M. Mechanics of cellular and other low-density materials. Int. J. Solids Struct. 2000, 37, 93–104. [Google Scholar] [CrossRef]
- Torquato, S.; Gibiansky, L.; Silva, M.; Gibson, L. Effective mechanical and transport properties of cellular solids. Int. J. Mech. Sci. 1998, 40, 71–82. [Google Scholar] [CrossRef]
- Mills, N. Polymer Foams Handbook: Engineering and Biomechanics Applications and Design Guide; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Sutherland, L.S. A review of impact testing on marine composite materials: Part II—Impact event and material parameters. Compos. Struct. 2018, 188, 503–511. [Google Scholar] [CrossRef]
- Sutherland, L.S. A review of impact testing on marine composite materials: Part III—Damage tolerance and durability. Compos. Struct. 2018, 188, 512–518. [Google Scholar] [CrossRef]
- Köll, J.; Hallström, S. Morphology effects on constitutive properties of foams. In Proceedings of the 18th International Conference on Composite Materials, Jeju Island, Korea, 21 August 2011. [Google Scholar]
- Colloca, M.; Dorogokupets, G.; Gupta, N.; Porfiri, M. Mechanical properties and failure mechanisms of closed-cell PVC foams. Int. J. Crashworthiness 2012, 17, 327–336. [Google Scholar] [CrossRef]
- Grossman, R.F. Handbook of Vinyl Formulating; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Wu, Q.; Zhou, N.; Zhan, D. Effect of processing parameters and vibrating field on poly (vinyl chloride) microcellular foam morphology. Polym. -Plast. Technol. Eng. 2009, 48, 851–859. [Google Scholar] [CrossRef]
- Jin, F.-L.; Zhao, M.; Park, M.; Park, S.-J. Recent trends of foaming in polymer processing: A review. Polymers 2019, 11, 953. [Google Scholar] [CrossRef] [PubMed]
- Altenbach, H.; Eremeyev, V.A. Thin-walled structures made of foams. In Cellular and Porous Materials in Structures and Processes; Springer: Vienna, Austria, 2010; pp. 167–242. [Google Scholar]
- Luong, D.D.; Pinisetty, D.; Gupta, N. Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: Experimental investigation and critical review of state of the art. Compos. Part B Eng. 2013, 44, 403–416. [Google Scholar] [CrossRef]
- Thomas, T.; Mahfuz, H.; Carlsson, L.A.; Kanny, K.; Jeelani, S. Dynamic compression of cellular cores: Temperature and strain rate effects. Compos. Struct. 2002, 58, 505–512. [Google Scholar] [CrossRef]
- Chakravarty, U.; Mahfuz, H.; Saha, M.; Jeelani, S. Strain rate effects on sandwich core materials: An experimental and analytical investigation. Acta Mater. 2003, 51, 1469–1479. [Google Scholar] [CrossRef]
- Saha, M.; Mahfuz, H.; Chakravarty, U.; Uddin, M.; Kabir, M.E.; Jeelani, S. Effect of density, microstructure, and strain rate on compression behavior of polymeric foams. Mater. Sci. Eng. A 2005, 406, 328–336. [Google Scholar] [CrossRef]
- Tagarielli, V.; Deshpande, V.; Fleck, N.A. The high strain rate response of PVC foams and end-grain balsa wood. Compos. Part B Eng. 2008, 39, 83–91. [Google Scholar] [CrossRef]
- Daniel, I.M.; Cho, J.-M. Characterization of anisotropic polymeric foam under static and dynamic loading. Exp. Mech. 2011, 51, 1395–1403. [Google Scholar] [CrossRef]
- Daniel, I.M.; Cho, J.-M.; Werner, B.T. Characterization and modeling of stain-rate-dependent behavior of polymeric foams. Compos. Part A Appl. Sci. Manuf. 2013, 45, 70–78. [Google Scholar] [CrossRef]
- DIAB. Divinycell H Technical Manual; DIAB Group: Laholm, Sweden, 2017. [Google Scholar]
- Meng, H.; Li, Q. An SHPB set-up with reduced time-shift and pressure bar length. Int. J. Impact Eng. 2003, 28, 677–696. [Google Scholar] [CrossRef]
- Chen, W.; Lu, F.; Frew, D.J.; Forrestal, M.J. Dynamic compression testing of soft materials. J. Appl. Mech. 2002, 69, 214–223. [Google Scholar] [CrossRef]
- Ouellet, S.; Cronin, D.; Worswick, M. Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions. Polym. Test. 2006, 25, 731–743. [Google Scholar] [CrossRef]
- Mahfuz, H.; Al Mamun, W.; Haque, A.; Turner, S.; Mohamed, H.; Jeelani, S. An innovative technique for measuring the high strain rate response of sandwich composites. Compos. Struct. 2000, 50, 279–285. [Google Scholar] [CrossRef]
- Nagy, A.; Ko, W.; Lindholm, U. Mechanical behavior of foamed materials under dynamic compression. J. Cell. Plast. 1974, 10, 127–134. [Google Scholar] [CrossRef]
- Mondal, D.; Goel, M.; Das, S. Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam. Mater. Sci. Eng. A 2009, 507, 102–109. [Google Scholar] [CrossRef]
Property | Unit | H180 | H160 | H250 |
---|---|---|---|---|
Plastic stress | MPa | 1.4 | 3.4 | 7.2 |
Compressive modulus | MPa | 90 | 200 | 4000 |
Tensile strength | MPa | 3.5 | 5.4 | 9.2 |
Tensile modulus | MPa | 95 | 205 | 320 |
Shear strength | MPa | 1.15 | 2.6 | 4.5 |
Shear modulus | MPa | 27 | 60 | 97 |
Poisson ratio | MPa | - | 0.4 | 0.4 |
Foam Type | Compression Strength | Plateau Stress | ||
---|---|---|---|---|
σ0 (MPa) | m | σ0 (MPa) | m | |
H75 | 1.36 | 0.038 | 1.30 | 0.031 |
H160 | 6.09 | 0.052 | 5.73 | 0.039 |
H250 | 9.89 | 0.055 | 8.78 | 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Pang, Y.; Liu, X.; Qu, J. Experimental Study of the Dynamic and Static Compression Mechanical Properties of Closed-Cell PVC Foams. Polymers 2022, 14, 3522. https://doi.org/10.3390/polym14173522
Yao H, Pang Y, Liu X, Qu J. Experimental Study of the Dynamic and Static Compression Mechanical Properties of Closed-Cell PVC Foams. Polymers. 2022; 14(17):3522. https://doi.org/10.3390/polym14173522
Chicago/Turabian StyleYao, Houqi, Yuezhao Pang, Xin Liu, and Jia Qu. 2022. "Experimental Study of the Dynamic and Static Compression Mechanical Properties of Closed-Cell PVC Foams" Polymers 14, no. 17: 3522. https://doi.org/10.3390/polym14173522
APA StyleYao, H., Pang, Y., Liu, X., & Qu, J. (2022). Experimental Study of the Dynamic and Static Compression Mechanical Properties of Closed-Cell PVC Foams. Polymers, 14(17), 3522. https://doi.org/10.3390/polym14173522