Curing Kinetics of Methylene Diphenyl Diisocyanate—Based Polyurethane Elastomers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polyurethane Curing Systems
2.3. Differential Scanning Calorimetry
2.4. Fourier Transform-Infrared Analysis
3. Theoretical Basis of Curing Kinetics
3.1. Isoconversional Methods: Model-Free Kinetics (MFK)
3.1.1. Flynn-Wall-Ozawa Method
3.1.2. Freidman Method
4. Results
4.1. Curing Progress Analysis of MDI-Based Polyurethane System
4.2. FTIR Analysis
4.3. Model Free Kinetic Models
4.4. Model Fitting Kinetic Methods
4.4.1. nth Order Model
4.4.2. Autocatalytic Reaction Model
4.5. Determination of Optimal Curing Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, Y.; Lindsay, C.I.; Macosko, C.; Stein, A. Synthesis and Properties of Vermiculite-Reinforced Polyurethane Nanocomposites. ACS Appl. Mater. Inter. 2011, 3, 3709–3717. [Google Scholar] [CrossRef] [PubMed]
- Zia, K.M.; Bhatti, H.N.; Bhatti, I.A. Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React. Funct. Polym. 2007, 67, 675–692. [Google Scholar] [CrossRef]
- Van, T.T.; Farhana, A.; Aybala, U.; Ramazan, A. Polyurethane nanocomposite coating with silanized graphene and hexagonal boron nitride as nanoadditives for improved resistance against ultraviolet degradation. J. Compos. Mater. 2018, 53, 1387–1399. [Google Scholar]
- Sun, M.; Ren, X.; Zhang, J.; Zhang, X.; Wang, H. Preparation and characterization of one-component polyurethane powder adhesives by the solution polymerization technology. J. Appl. Polym. Sci. 2019, 136, 47898. [Google Scholar] [CrossRef]
- Cheng, B.X.; Gao, W.C.; Ren, X.M.; Ouyang, X.Y.; Zhao, Y.; Zhao, H.; Wu, W.; Huang, C.X.; Liu, Y. A review of microphase separation of polyurethane: Characterization and applications. Polym. Test. 2022, 107, 107489. [Google Scholar] [CrossRef]
- Lei, W.Q.; Fang, C.Q.; Zhou, X.; Yin, Q.; Pan, S.; Yang, R.; Liu, D.; Ouyang, Y. Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials. Carbohyd. Polym. 2018, 181, 376–385. [Google Scholar] [CrossRef]
- Mahunaki, M.P.; Asl, V.H.; Mamaqani, H.R.; Koosha, M.; Yazdi, M. Preparation of polyurethane composites reinforced with halloysite and carbon nanotubes. Polym. Compos. 2020, 42, 450–461. [Google Scholar]
- Kojio, K.; Nozaki, S.; Takahara, A.; Yamasaki, S.; Yamasaki, S. Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: A review. J. Polym. Res. 2020, 27, 140. [Google Scholar] [CrossRef]
- Barikani, M.; Hepburn, C. The relative thermal stability of polyurethane elastomers: Effect of diisocyanate structure. Cell Polym. 1987, 6, 41–54. [Google Scholar]
- Hardis, R.; Jessop, J.; Peters, F.E.; Kessler, M.R. Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA. Compos. Part A Appl. Sci. 2013, 49, 100–108. [Google Scholar] [CrossRef]
- Chai, C.P.; Hou, J.H.; Yang, X.H.; Zheng, Z.; Huang, M.H.; Li, G.P. Two-component waterborne polyurethane: Curing process study using dynamic in situ IR spectroscopy. Polym. Test. 2018, 5, 259–265. [Google Scholar] [CrossRef]
- Luo, S.G.; Tan, H.M.; Zhang, J.G.; Wu, Y.J.; Pei, F.K.; Meng, X.H. Catalytic mechanisms of triphenyl bismuth, dibutyltindilaurate, and their combination in polyurethane-forming reaction. Appl. Polym. Sci. 1997, 65, 1217–1225. [Google Scholar] [CrossRef]
- Goertzen, W.K.; Xia, S.; Akinc, M.; Kessler, M.R. Rheology and Curing Kinetics of Fumed Silica/Cyanate Ester Nanocomposites. Polym. Eng. Sci. 2008, 48, 875–883. [Google Scholar] [CrossRef]
- Kim, J.T.; Martin, D.; Halley, P.; Kim, D.S. Chemorheological studies on a thermoset PU/clay nanocomposite system. Compos. Interfaces 2007, 14, 449–465. [Google Scholar] [CrossRef]
- Olejnik, A.; Gosz, K.; Piszczyk, U. Kinetics of cross-linking processes of fast-curing polyurethane system. Thermochim. Acta 2019, 683, 178435. [Google Scholar] [CrossRef]
- Rodrigues, J.; Pereira, M.R.; Souza, A.D. DSC monitoring of the cure kinetics of a castor oil-based polyurethane. Thermochim. Acta 2005, 427, 31–36. [Google Scholar] [CrossRef]
- Bidegain, B.F.D.A.; Rueda, L.; Stefani, P.M.; Caba, K.; Eceiza, A. Kinetic and thermodynamic studies of the formation of a polyurethane based on 1,6-hexamethylene diisocyanate and poly(carbonate-co-ester)diol. Thermochim. Acta 2007, 459, 94–103. [Google Scholar]
- Ng, S.J.; Boswell, R.; Claus, S.J.; Arnold, F. Degree of cure, heat of reaction and viscosity of 8552 and 977-3 HM epoxy resins. J. Adv. Mater-Covina. 2002, 34, 33–37. [Google Scholar]
- Kissinger, E.D. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1417–1421. [Google Scholar] [CrossRef]
- Yu, S.Z.; Li, X.D.; Guo, X.Y.; Li, Z.R.; Zou, M.S. Curing and Characteristics of N,N,N0,N0-Tetraepoxypropyl-4,40-Diaminodiphenylmethane Epoxy Resin-Based Buoyancy Material. Polymers. 2019, 11, 1137. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. 1970, 2, 301–324. [Google Scholar] [CrossRef]
- Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef]
- Flynn, J.H.; Wall, L.A. A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B: Polym. Lett. 1966, 4, 323–328. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Polym. Chem. 1964, 6, 183–195. [Google Scholar] [CrossRef]
- Sbirrazzuoli, N.; Mititelu-Mija, A.; Vincent, L.; Alzina, C. Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures. Thermochim. Acta 2006, 447, 167–177. [Google Scholar] [CrossRef]
- Wang, D.H.; Li, X.D.; Ge, M.C.; Lei, L.S.; Yang, Y.; Liu, S.; Zou, M.S. Synthesis and research of basalt microfiber-reinforced polyurethane elastomer composites. J. Appl. Polym. Sci. 2022, 3, 3709. [Google Scholar] [CrossRef]
- Crane, L.W.; Dynes, P.J.; Kaelble, D.H. Analysis of curing kinetics in polymer composites. J. Polym. Sci. Polym. Chem. 2010, 11, 533–540. [Google Scholar] [CrossRef]
- Jubsilp, C.; Punson, K.; Takeichi, T.; Rimdusit, S. Curing kinetics of Benzoxazine–epoxy copolymer investigated by non-isothermal differential scanning calorimetry. Polym. Degrad. Stab. 2010, 95, 918–924. [Google Scholar] [CrossRef]
- Xiong, X.; Ren, R.; Liu, S.; Lu, S.; Chen, P. The curing kinetics and thermal properties of epoxy resins cured by aromatic diamine with hetero-cyclic side chain structure. Thermochim. Acta 2014, 595, 22–27. [Google Scholar] [CrossRef]
- Ding, J.; Peng, W.; Luo, T.; Yu, H. Study on the curing reaction kinetics of a novel epoxy system. RSC Adv. 2017, 7, 6981–6987. [Google Scholar] [CrossRef] [Green Version]
β/K·min−1 | Ti/°C | Tp/°C | Tf/°C | ΔH/J·g−1 |
---|---|---|---|---|
5 | 20.7 | 91.3 | 207.6 | 84.3 |
10 | 21.3 | 101.8 | 220.3 | 100.5 |
15 | 23.3 | 112.4 | 222.5 | 117.5 |
20 | 23.9 | 122.6 | 228.9 | 134.2 |
β/K·min−1 | α < 0.45 | α > 0.45 | ||||||
---|---|---|---|---|---|---|---|---|
m | n | A × 106 | R2 | m | n | A × 105 | R2 | |
5 K | 0.1648 | 1.8531 | 1.29 | 0.9956 | 1.2498 | 0.9212 | 3.90 | 0.9951 |
10 K | 0.3036 | 1.8253 | 1.31 | 0.9957 | 1.0375 | 0.9516 | 4.95 | 0.9961 |
15 K | 0.4222 | 2.6066 | 1.72 | 0.9949 | 1.8287 | 1.0541 | 2.78 | 0.9960 |
20 K | 0.5104 | 2.1920 | 1.20 | 0.9957 | 1.4636 | 0.9325 | 3.74 | 0.9986 |
Average value | 0.3503 | 2.1193 | 1.38 | 0.9955 | 1.3949 | 0.9649 | 3.84 | 0.9965 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Li, X.; Ge, M.; Du, X.; Zou, M. Curing Kinetics of Methylene Diphenyl Diisocyanate—Based Polyurethane Elastomers. Polymers 2022, 14, 3525. https://doi.org/10.3390/polym14173525
Liu S, Li X, Ge M, Du X, Zou M. Curing Kinetics of Methylene Diphenyl Diisocyanate—Based Polyurethane Elastomers. Polymers. 2022; 14(17):3525. https://doi.org/10.3390/polym14173525
Chicago/Turabian StyleLiu, Shuang, Xiaodong Li, Mengchen Ge, Xujie Du, and Meishuai Zou. 2022. "Curing Kinetics of Methylene Diphenyl Diisocyanate—Based Polyurethane Elastomers" Polymers 14, no. 17: 3525. https://doi.org/10.3390/polym14173525
APA StyleLiu, S., Li, X., Ge, M., Du, X., & Zou, M. (2022). Curing Kinetics of Methylene Diphenyl Diisocyanate—Based Polyurethane Elastomers. Polymers, 14(17), 3525. https://doi.org/10.3390/polym14173525