Non-Linearity of Thermosetting Polymers’ and GRPs’ Thermal Expanding: Experimental Study and Modeling
Abstract
:1. Introduction
- -
- Thermosetting polymers’ thermal expansion experimental research before and after prolonged thermal aging.
- -
- Design and testing of non-linear analytic model of thermosetting polymers’ thermal expansion.
- -
- Experimental study of thermal expansion of GRPs with a matrix based on the previously studied thermosetting binders, before and after thermal aging.
- -
- Prediction of temperature dependences of the CTE of glass-reinforced plastics by means of finite-element homogenization and comparison with experimental results.
2. Materials and Methods
2.1. Materials
- Epoxy resin KER 828, with the following main characteristics: Epoxy Group Content (EGC) 5308 mmol/kg, Epoxide Equivalent Weight (EEW) 188.5 g/eq, viscosity at 25 °C 12.7 Pa.s, HCl 116 mg/kg, and total chlorine 1011 mg/kg. Manufacturer: KUMHO P&B Chemicals, Gwangju, South Korea.
- Hardener for epoxy resin methyl tetrahydrophthalic anhydride with the following main characteristics: viscosity at 25 °C 63 Pa.s, anhydride content 42.4%, volatile fraction content 0.55%, and free acid 0.1%. Manufacturer: ASAMBLY Chemicals company Ltd., Nanjing, China.
- Alkofen (epoxy resin curing accelerator) with the following main characteristics: viscosity at 25 °C 150 Pa.s, molecular formula C15H27N3O, molecular weight 265, and amine value 600 mg KOH/g. Manufacturer: Epital JSC, Moscow, Russian Federation.
- -
- Thickness 0.190 +0.01/−0.02 mm;
- -
- Surface density 200 +16/−10 g/m2;
- -
- Number of yarns per 1 cm of fabric on the basis 12 +/− 1;
- -
- Number of yarns per 1 cm of fabric on the weft 8 +/− 1;
- -
- Weave–plain;
- -
- Oiling agent–paraffin emulsion.
- -
- Thickness, 0.27 +0.01/−0.02 mm;
- -
- Surface density, 260 +25/−25 g/m2;
- -
- Number of yarns per 1 cm of fabric on the basis 12 +/− 1;
- -
- Number of yarns per 1 cm of fabric on the weft 8 +/− 1;
- -
- Weave–plain;
- -
- Oiling agent–aminosilane.
2.2. Methods
2.2.1. Long Heat Treatment (Thermal Aging)
2.2.2. Dilatometric Investigation
- -
- Temperature range: 20–1500 °C
- -
- Colding and heating intensity: 0.01 K/min–50 K/min (5 K/min in experiment)
- -
- Etalon: Al2O3;
- -
- Linear range: 500 mcr;
- -
- Sample length: max. 28 mm;
- -
- Sample diameter: max. 12 mm;
- -
- Expanding Δl accuracy: 0.125 nm;
- -
- Atmosphere: inertial dynamic argon with gas flowing controller.
2.2.3. Prediction of the Thermal Expansion Coefficient (CTE)
3. Results
3.1. Analytic Prediction
- The thermal expanding (TE) has non-linearity from normal to extreme temperature that probably accords to the glassing temperature of polymer Tg, and TE can be characterized by the coefficient of integral non-linear thermal expanding (CNTE) αnl;
- After temperature breaking point, the TE achieves the extremum and linearity of expansion with further heating; and can be characterized by coefficient of linear TE (CLTE) αtg;
- According to DMA results, the Tg is equal to temperature Tnl, finishing the period of polymers’ thermal expanding non-linearity [22];
- Prolonged thermal relaxation (at aging) of epoxy and phenolic glassed polymers (GP) results in some reduction in epoxy CNTE and an increase the phenolic and epoxy-phenolic CNTE, thus increasing all polymers’ CLTE;
- CNTE changing after thermal relaxation is conditional, because CNTE depends on extreme non-linear relative expansion εnl-max that accords to temperature of GP: thermal relaxation causes an increase the εnl-max containing epoxy resin, and a reduction in the εnl-max containing phenolic resin.
3.2. Prediction by Finite Element Homogenization
- -
- Experimental dependences of CTE of polymer matrices on temperature;
- -
- Experimental temperature dependences of elastic moduli of polymer matrices, obtained in [7];
- -
- Characteristics of fiberglass plastic structure (relative fiber and matrix content, average distance between strands, layer thickness, etc.);
- -
- Constant CTE (5 × 10–6 °C −1) and modulus of elasticity (73 MPa) of glass fibers, taken by default for the E-Glass material from the material base of the ANSYS Workbench package.
- The outlines of curves of CTE dependence on temperature, built based on calculations, are in good agreement with the outlines of the experimental curves in all cases except for the case of fiberglass on the epoxy-phenolic binder after curing (break point on the graph of the experimental graph is around 90 °C, and the calculated one is around 130 °C). To establish the reason for this, it is necessary to conduct additional tests on more samples.
- A satisfactory concurrence of the numerical results of the prognosis and the experiment (their relations are shown in the graphs on Figure 18, Figure 19 and Figure 20) for all considered cases is observed in the temperature range from 50 to 100 °C, after the glass transition temperature best coincidence of numerical values of CTE is obtained for glass-reinforced plastics on epoxy resin, which were not subjected to thermal aging.
- For glass-reinforced plastics on epoxy-phenolic binder at temperatures exceeding 100 °C, the predicted CTE values were significantly higher than the experimental ones (2.33–10.18 times). The reason for such a significant mismatch will have to be clarified in the future.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Astashkin, V.M.; Mishnev, M.V. On the Development of the Manufacturing Technology of Fiberglass Cylindrical Shells of Gas Exhaust Trunks by Buildup Winding. Procedia Eng. 2016, 150, 1636–1642. [Google Scholar] [CrossRef] [Green Version]
- Bochicchio, V.A. GRP chimney liners for power plant flue gas desulfurization—A chimney suppliers perspective. In NACE—International Corrosion Conference Series; OnePetro: Houston, TX, USA, 2011. [Google Scholar]
- El Damatty, A.A.; Awad, A.S.; Vickery, B.J. Thermal analysis of GRP chimneys using consistent laminated shell element. Thin-Walled Struct. 2000, 37, 57–76. [Google Scholar] [CrossRef]
- García-Moreno, I.; Caminero, M.Á.; Rodríguez, G.P.; López-Cela, J.J. Effect of thermal ageing on the impact and flexural damage behaviour of carbon fibre-reinforced epoxy laminates. Polymers 2019, 11, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Xian, G.; Li, H.; Sui, L. Thermal aging of an anhydride-cured epoxy resin. Polym. Degrad. Stab. 2015, 118, 111–119. [Google Scholar] [CrossRef]
- Qin, G.; Na, J.; Mu, W.; Tan, W.; Yang, J.; Ren, J. Effect of continuous high temperature exposure on the adhesive strength of epoxy adhesive, CGRP and adhesively bonded CGRP-aluminum alloy joints. Compos. Part B Eng. 2018, 154, 43–55. [Google Scholar] [CrossRef]
- Korolev, A.; Mishnev, M.; Vatin, N.I.; Ignatova, A. Prolonged Thermal Relaxation of the Thermosetting Polymers. Polymers 2021, 13, 4104. [Google Scholar] [CrossRef] [PubMed]
- Sanditov, D.S.; Sydykov, B.S. Modulus of elasticity and thermal expansion coefficient of glassy solids. Phys. Solid State 2014, 56, 1006–1008. [Google Scholar] [CrossRef]
- Schwarz, G. Thermal expansion of polymers from 4.2 K to room temperature. Cryogenics 1988, 28, 248–254. [Google Scholar] [CrossRef]
- Sahagun, C.M.; Morgan, S.E. Thermal control of nanostructure and molecular network development in epoxy-amine thermosets. ACS Appl. Mater. Interfaces 2012, 4, 564–572. [Google Scholar] [CrossRef]
- Shardakov, I.N.; Trufanov, A.N. Identification of the temperature dependence of the thermal expansion coefficient of polymers. Polymers 2021, 13, 3035. [Google Scholar] [CrossRef]
- Glavchev, I.; Petrova, K.; Ivanova, M. Determination of the coefficient of thermal expansion of epoxy composites. Polym. Test. 2002, 21, 177–179. [Google Scholar] [CrossRef]
- Mihu, G.; Bria, V.; Circiumaru, A.; Birsan, I.G.; Bunea, M. Specific heat and thermal expansion coefficient of hybrid epoxy composites. Mater. Plast. 2020, 57, 61–69. [Google Scholar] [CrossRef]
- Shi, Z.; Li, X.F.; Bai, H.; Xu, W.W.; Yang, S.Y.; Lu, Y.; Han, J.J.; Wang, C.P.; Liu, X.J.; Li, W.B. Influence of microstructural features on thermal expansion coefficient in graphene/epoxy composites. Heliyon 2016, 2, e00094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naik, N.K.; Ganesh, V.K. Thermo-mechanical behaviour of plain weave fabric composites: Experimental investigations. J. Mater. Sci. 1997, 32, 267–277. [Google Scholar] [CrossRef]
- Ganesh, V.K.; Naik, N.K. Thermal expansion coefficients of plain-weave fabric laminates. Compos. Sci. Technol. 1994, 51, 387–408. [Google Scholar] [CrossRef]
- Takenaka, K.; Ichigo, M. Thermal expansion adjustable polymer matrix composites with giant negative thermal expansion filler. Compos. Sci. Technol. 2014, 104, 47–51. [Google Scholar] [CrossRef]
- Wong, C.P.; Bollampally, R.S. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 1999, 74, 3396–3403. [Google Scholar] [CrossRef]
- Vaggar, G.B.; Kamate, S.C.; Badyankal, P.V. Thermal properties characterization of glass fiber hybrid polymer composite materials. Int. J. Eng. Technol. 2018, 7, 34. [Google Scholar] [CrossRef]
- Davy, K.W.M.; Braden, M. Thermal expansion of glassy polymers. Biomaterials 1992, 13, 1043–1046. [Google Scholar] [CrossRef]
- Sun, Q.; Jin, K.; Huang, Y.; Guo, J.; Rungrotmongkol, T.; Maitarad, P.; Wang, C. Influence of conformational change of chain unit on the intrinsic negative thermal expansion of polymers. Chin. Chem. Lett. 2020, 32, 1515–1518. [Google Scholar] [CrossRef]
- Foster, J.C.; Staiger, C.L.; Dugger, J.W.; Redline, E.M. Tuning Epoxy Thermomechanics via Thermal Isomerization: A Route to Negative Coefficient of Thermal Expansion Materials. ACS Macro Lett. 2021, 10, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Heinle, M.; Drummer, D. Temperature-dependent coefficient of thermal expansion (CTE) of injection molded, short-glass-fiber-reinforced polymers. Polym. Eng. Sci. 2015, 55, 2661–2668. [Google Scholar] [CrossRef]
- Abbasi, A.; Mondali, M. An analytical approach to determine coefficients of thermal expansion of CNT/polymer nanocomposites. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 4268–4276. [Google Scholar] [CrossRef]
- Ribeiro, M.C.S.; Reis, J.M.L.; Ferreira, A.J.M.; Marques, A.T. Thermal expansion of epoxy and polyester polymer mortars—Plain mortars and fibre-reinforced mortars. Polym. Test. 2003, 22, 849–857. [Google Scholar] [CrossRef]
- Chen, Y.M.; Ting, J.M. Ultra high thermal conductivity polymer composites. Carbon 2002, 40, 359–362. [Google Scholar] [CrossRef]
- Mahmoodi, M.J.; Hassanzadeh-Aghdam, M.K.; Ansari, R. Effects of added SiO2 nanoparticles on the thermal expansion behavior of shape memory polymer nanocomposites. J. Intell. Mater. Syst. Struct. 2019, 30, 2200. [Google Scholar] [CrossRef]
- Baschek, G.; Hartwig, G. Parameters influencing the thermal expansion of polymers and fibre composites. Cryogenics 1998, 38, 99–103. [Google Scholar] [CrossRef]
- Lobanov, D.S.; Slovikov, S.V. Mechanical Behavior of a Unidirectional Basalt-Fiber-Reinforced Plastic Under Thermomechanical Loadings. Mech. Compos. Mater. 2018, 54, 351–358. [Google Scholar] [CrossRef]
- Shen, X.; Viney, C.; Johnson, E.R.; Wang, C.; Lu, J.Q. Large negative thermal expansion of a polymer driven by a submolecular conformational change. Nat. Chem. 2013, 5, 1035–1041. [Google Scholar] [CrossRef]
- Hadipeykani, M.; Aghadavoudi, F.; Toghraie, D. A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study. Phys. A Stat. Mech. Its Appl. 2020, 546, 123995. [Google Scholar] [CrossRef]
- Leroy, E.; Dupuy, J.; Maazouz, A.; Seytre, G. Evolution of the coefficient of thermal expansion of a thermosetting polymer during cure reaction. Polymer 2005, 46, 9919–9927. [Google Scholar] [CrossRef]
- Pyrzowski, Ł. Testing Contraction and Thermal Expansion Coefficient of Construction and Moulding Polymer Composites. Pol. Marit. Res. 2018, 25, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Barker, R.E., Jr. An Approximate Relation Between Elastic Moduli and Thermal Expansivities. J. Appl. Phys. 1963, 34, 107–116. [Google Scholar] [CrossRef]
- Kouznetsova, V.G.; Geers, M.G.D.; Brekelmans, W.A.M. Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 2004, 193, 5525–5550. [Google Scholar] [CrossRef]
- Geers, M.G.D.; Kouznetsova, V.G.; Brekelmans, W.A.M. Multi-scale computational homogenization: Trends and challenges. J. Comput. Appl. Math. 2010, 234, 2175–2182. [Google Scholar] [CrossRef]
- Dasgupta, A.; Agarwal, R.K.; Bhandarkar, S.M. Three-dimensional modeling of woven-fabric composites for effective thermo-mechanical and thermal properties. Compos. Sci. Technol. 1996, 56, 209–223. [Google Scholar] [CrossRef]
- Gou, J.J.; Gong, C.L.; Gu, L.X.; Li, S.; Tao, W.Q. The unit cell method in predictions of thermal expansion properties of textile reinforced composites. Compos. Struct. 2018, 195, 99–117. [Google Scholar] [CrossRef]
- Sun, Z.; Shan, Z.; Shao, T.; Li, J.; Wu, X. A multiscale modeling for predicting the thermal expansion behaviors of 3D C/SiC composites considering porosity and fiber volume fraction. Ceram Int. 2021, 47, 7925–7936. [Google Scholar] [CrossRef]
- Mishnev, M.; Korolev, A.; Ekaterina, B.; Dmitrii, U. Effect of Long-Term Thermal Relaxation of Epoxy Binder on Thermoelasticity of Fiberglass Plastics: Multiscale Modeling and Experiments. Polymers 2022, 14, 1712. [Google Scholar] [CrossRef] [PubMed]
- Ansys. Material Designer Users Guide. Theory Documentation [Electronic Resource]. Available online: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v212/en/acp_md/acp_md_theory.html (accessed on 17 April 2022).
- Mishnev, M.V.; Zadorin, A.A.; Khoroshilov, N.A. Prediction of elastic characteristics of fiber-reinforced plastic in bending: Multi-scale finite element modeling and experiment. Constr. Unique Build. Struct. 2021, 5, 1–18. [Google Scholar]
№ | Composition | Name | Dilatometry |
---|---|---|---|
1 | Epoxy (Ker 828 52.5% + MTHPA 44.5% + alkofen 3%) | EP | + |
2 | Phenolic (SFZ-309) 100% | PF | + |
3 | Epoxy-phenolic (ker 828 45% + SFZ-309 55%) | EP-PF | + |
№ | Composite | Name | Dilatometry |
---|---|---|---|
1 | EP 46% + EZ-200 54% | EP+EZ | + |
2 | EP 46% + T23 54% | EP+T23 | + |
3 | EP-PF 46% + EZ-200 54% | EP-PF+EZ | + |
Composition | Tg, °C | Tnl, °C | Mass Lost, % | Linear Shrinkage | Max αnl, 106 | αtg, 106 | εnl-max |
---|---|---|---|---|---|---|---|
EP | 115 | 115 | - | - | 88.7 | 219.5 | 0.0080 |
EP tr | 136 | 138 | 0.058 | 0.018 | 91.4 | 202.8 | 0.0110 |
PF | 243 | 130 | - | - | 40.5 | 56.7 | 0.0040 |
PF tr | - | 110 | 0.072 | 0.022 | 32.6 | 51.3 | 0.0025 |
EP-PF | 86 | 110 | - | - | 77.8 | 186.9 | 0.0065 |
EP-PF tr | 136 | 150 | 0.06 | 0.019 | 76.6 | 155.2 | 0.0090 |
№ | Binder | Glass Fabric | Designation of Fiberglass | Thermal Aging |
---|---|---|---|---|
1 | EP | EZ-200 | EP-EZ200 | – |
2 | EP | EZ-200 | EP-EZ200-TA | + |
3 | EP | T-23 | EP-T23 | – |
4 | EP | T-23 | EP-T23-TA | + |
5 | EP-PF | EZ-200 | EP-PF-EZ | – |
6 | EP-PF | EZ-200 | EP-PF-EZ200-TA | + |
№ | Type of Glass Fabric | Yarn Volume Fraction | Yarn Fiber Volume Fraction | Fiber Volume Fraction | Average Distance between the Yarns | Average Layer Thickness |
---|---|---|---|---|---|---|
1 | T-23 | 0.3001 | 0.4088 | 0.122 | 0.81 | 0.316 |
2 | EZ-200 | 0.2516 | 0.4009 | 0.101 | 0.98 | 0.202 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korolev, A.; Mishnev, M.; Ulrikh, D.V. Non-Linearity of Thermosetting Polymers’ and GRPs’ Thermal Expanding: Experimental Study and Modeling. Polymers 2022, 14, 4281. https://doi.org/10.3390/polym14204281
Korolev A, Mishnev M, Ulrikh DV. Non-Linearity of Thermosetting Polymers’ and GRPs’ Thermal Expanding: Experimental Study and Modeling. Polymers. 2022; 14(20):4281. https://doi.org/10.3390/polym14204281
Chicago/Turabian StyleKorolev, Alexander, Maxim Mishnev, and Dmitrii Vladimirovich Ulrikh. 2022. "Non-Linearity of Thermosetting Polymers’ and GRPs’ Thermal Expanding: Experimental Study and Modeling" Polymers 14, no. 20: 4281. https://doi.org/10.3390/polym14204281
APA StyleKorolev, A., Mishnev, M., & Ulrikh, D. V. (2022). Non-Linearity of Thermosetting Polymers’ and GRPs’ Thermal Expanding: Experimental Study and Modeling. Polymers, 14(20), 4281. https://doi.org/10.3390/polym14204281