Development of Biodegradable Polyesters: Study of Variations in Their Morphological and Thermal Properties through Changes in Composition of Alkyl-Substituted (ε-DL) and Non-Substituted (ε-CL, EB, L-LA) Monomers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Characterization and Equipment
2.3. Polyester Copolymers Synthesis
3. Results
3.1. Polyester Copolymers Synthesis
3.2. Thermal and Morphological Analysis
Series I | L-LA (% mol) | ε-DL (% mol) | Mn (kDa) | Mw (kDa) | Ɖ | Tm (°C) | Tc (°C) | Tg (°C) | TGA (5%w) | cXc |
---|---|---|---|---|---|---|---|---|---|---|
A-1 | 100 | 0 | 9.2 | 20.8 | 2.26 | - | - | 43.1 | 203 | - |
A-2 | 91.6 | 8.4 | 9.7 | 15.9 | 1.64 | - | - | a −51.5, b 45 | 247 | - |
A-3 | 76.2 | 23.8 | 5.6 | 13.6 | 2.42 | - | - | −51.7, 30 | 217 | - |
A-4 | 54.4 | 46.6 | 8.5 | 14.8 | 1.74 | - | - | −53.2 | 237 | - |
A-5 | 0 | 100 | 12.9 | 21.7 | 1.68 | - | - | −55.1 | 316 | - |
Series II | EB (% mol) | ε-DL (% mol) | Mn (kDa) | Mw (kDa) | Ɖ | Tm (°C) | Tc (°C) | Tg (°C) | TGA (5%w) | Xc |
---|---|---|---|---|---|---|---|---|---|---|
B-1 | 100 | 0 | 5.4 | 12.6 | 2.34 | 68.8 | 52.7 | - | 294 | 1.0 |
B-2 | 93.0 | 7.0 | 4.5 | 9.9 | 2.2 | 71.8 | 38.5 | - | 321 | 0.90 |
B-3 | 77.0 | 23.0 | 4.2 | 8.9 | 2.12 | 52.6 | 27.5 | −56.8 | 316 | 0.45 |
B-4 | 67.6 | 32.4 | 7.3 | 17.8 | 2.44 | 23.5 | −16.1 | −56.3 | 318 | - |
B-5 | 0 | 100 | 12.9 | 21.7 | 1.68 | - | - | −55.1 | 3.16 | - |
Series III | ε-CL (% mol) | ε-DL (% mol) | Mn (kDa) | Mw (kDa) | Ɖ | Tm (°C) | Tc (°C) | Tg (°C) | TGA (5%w) | Xc |
---|---|---|---|---|---|---|---|---|---|---|
C-1 | 100 | 0 | 5.9 | 15.2 | 2.57 | 55.8 | 29.8 | - | 324 | 1.0 |
C-2 | 93.5 | 6.5 | 4.0 | 8.2 | 2.04 | 50.8 | 18.6 | - | 317 | 1.01 |
C-3 | 83.4 | 16.6 | 4.4 | 7.8 | 1.78 | 44.1 | 12.1 | −61.7 | 317 | 0.25 |
C-4 | 69.9 | 30.1 | 14 | 22.8 | 1.63 | 21.5 | - | −62.1 | 319 | - |
C-5 | 0 | 100 | 12.9 | 21.7 | 1.68 | - | - | −55.1 | 316 | - |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, D.F. Specifications for innovative, enabling biomaterials based on the principles of biocompatibility mechanisms. Front. Bioeng. Biotechnol. 2019, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A.; et al. Metallic biomaterials: Current challenges and opportunities. Materials 2017, 10, 884. [Google Scholar] [CrossRef] [PubMed]
- Puppi, D.; Chiellini, F. Biodegradable polymers for biomedical additive manufacturing. Appl. Mater. Today 2020, 20, 100700. [Google Scholar] [CrossRef]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Dev. Ther. 2018, 12, 3117–3145. [Google Scholar] [CrossRef] [Green Version]
- Bu, Y.; Ma, J.; Bei, J.; Wang, S. Surface modification of aliphatic polyester to enhance biocompatibility. Front. Bioeng. Biotechnol. 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S.; Negahi Shirazi, A.; Dehghani, F. Biomedical applications of biodegradable polyesters. Polymers 2016, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Armentano, I.; Gigli, M.; Morena, F.; Argentati, C.; Torre, L.; Martino, S. Recent advances in nanocomposites based on aliphatic polyesters: Design, synthesis, and applications in regenerative medicine. Appl. Sci. 2018, 8, 1452. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, K. Biodegradable polymers and their role in drug delivery systems. Biomed. J. Sci. Tech. Res. 2018, 11, 8315–8320. [Google Scholar] [CrossRef]
- Olsén, P.; Borke, T.; Odelius, K.; Albertsson, A.C. ε-decalactone: A thermoresilient and toughening comonomer to poly(l-lactide). Biomacromolecules 2013, 14, 2883–2890. [Google Scholar] [CrossRef]
- Lin, L.; Xu, Y.; Wang, S.; Xiao, M.; Meng, Y. Ring-opening polymerization of l-lactide and ε-caprolactone catalyzed by versatile tri-zinc complex: Synthesis of biodegradable polyester with gradient sequence structure. Eur. Polym. J. 2016, 74, 109–119. [Google Scholar] [CrossRef]
- Jin, C.; Wei, Z.; Yu, Y.; Sui, M.; Leng, X.; Li, Y. Copolymerization of ethylene brassylate with δ-valerolactone towards isodimorphic random copolyesters with continuously tunable mechanical properties. Eur. Polym. J. 2018, 102, 90–100. [Google Scholar] [CrossRef]
- Fernández, J.; Larrañaga, A.; Etxeberria, A.; Sarasua, J.R. Ethylene brassylate-co-δ-hexalactone biobased polymers for application in the medical field: Synthesis, characterization and cell culture studies. RSC Adv. 2016, 6, 22121–22136. [Google Scholar] [CrossRef]
- Urbánek, T.; Trousil, J.; Rak, D.; Gunár, K.; Konefał, R.; Šlouf, M.; Sedlák, M.; Šebestová Janoušková, O.; Hrubý, M. γ-butyrolactone copolymerization with the well-documented polymer drug carrier poly(ethylene oxide)-block-poly(ε-caprolactone) to fine-tune its biorelevant properties. Macromol. Biosci. 2020, 20, 1–15. [Google Scholar] [CrossRef]
- Atanase, L.I.; Salhi, S.; Cucoveica, O.; Ponjavic, M.; Nikodinovic-Runic, J.; Delaite, C. Biodegradability assessment of polyester copolymers based on poly(ethylene adipate) and poly(ε-caprolactone). Polymers 2022, 14, 3736. [Google Scholar] [CrossRef]
- Hu, Y.; Daoud, W.A.; Cheuk, K.K.L.; Lin, C.S.K. Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: Focus on poly(lactic acid). Materials 2016, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Koltzenburg, S.; Maskos, M.; Nuyken, O. Ring opening polymerization. In Polymer Chemistry; Koltzenburg, S., Maskos, M., Nuyken, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 321–347. [Google Scholar] [CrossRef]
- Jasinska-Walc, L.; Hansen, M.R.; Dudenko, D.; Rozanski, A.; Bouyahyi, M.; Wagner, M.; Graf, R.; Duchateau, R. Topological behavior mimicking ethylene-hexene copolymers using branched lactones and macrolactones. Polym. Chem. 2014, 5, 3306–3310. [Google Scholar] [CrossRef] [Green Version]
- Krukiewicz, K.; Fernandez, J.; Skorupa, M.; Więcławska, D.; Poudel, A.; Sarasua, J.-R.; Quinlan, L.R.; Biggs, M.J.P. Analysis of a poly(ε-decalactone)/silver nanowire composite as an electrically conducting neural interface biomaterial. BMC Biomed. Eng. 2019, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cichoń, K.; Kost, B.; Basko, M. Synthesis and properties of ABA-triblock copolymers from polyester A-blocks and easily degradable polyacetal B-blocks. Polym. Chem. 2022, 13, 5243–5255. [Google Scholar] [CrossRef]
- Martello, M.T.; Schneiderman, D.K.; Hillmayer, M.A. Synthesis and melt processing of sustainable poly(ε-decalactone)-block-poly(lactide) multiblock thermoplastic elastomers. ACS Sustain. Chem. Eng. 2014, 2, 2519–2526. [Google Scholar] [CrossRef]
- Dzienia, A.; Maksym, P.; Hachuła, B.; Tarnacka, M.; Biela, T.; Golba, S.; Ziȩba, A.; Chorażewski, M.; Kaminski, K.; Paluch, M. Studying the catalytic activity of DBU and TBD upon water-initiated ROP of ε-caprolactone under different thermodynamic conditions. Polym. Chem. 2019, 10, 6047–6061. [Google Scholar] [CrossRef]
- Bossion, A.; Heifferon, K.V.; Meabe, L.; Zivic, N.; Taton, D.; Hedrick, J.L.; Long, T.E.; Sardon, H. Opportunities for organocatalysis in polymer synthesis via step-growth methods. Prog. Polym. Sci. 2019, 90, 164–210. [Google Scholar] [CrossRef]
- Nifant’ev, I.; Ivchenko, P. DFT modeling of organocatalytic ring-opening polymerization of cyclic esters: A crucial role of proton exchange and hydrogen bonding. Polymers 2019, 11, 2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohmeijer, B.G.G.; Pratt, R.C.; Leibfarth, F.; Logan, J.W.; Long, D.A.; Dove, A.P.; Nederberg, F.; Choi, J.; Wade, C.; Waymouth, R.M.; et al. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 2006, 39, 8574–8583. [Google Scholar] [CrossRef]
- De Jesús-Téllez, M.A.; Robles-González, F.; Díaz de León, R.; Ledezma-Pérez, A.; López-González, H.R. Síntesis de poliésteres alifáticos vía polimerización por apertura de anillo organocatalítica: Estudio de la influencia de los parámetros de reacción sobre sus propiedades térmicas y estructura molecular. Cienc. UANL 2022, 25, 39–47. [Google Scholar] [CrossRef]
- Thomas, C.; Peruch, F.; Bibal, B. Ring-opening polymerization of lactones using supramolecular organocatalysts under simple conditions. RSC Adv. 2012, 2, 12851–12856. [Google Scholar] [CrossRef]
- Ramos-Durán, G.; del Carmen González-Zarate, A.; Enríquez-Medrano, F.J.; Salinas-Hernández, M.; De Jesús-Téllez, M.A.; Díaz de León, R.; López-González, H.R. Synthesis of copolyesters based on substituted and non-substituted lactones towards the control of their crystallinity and their potential effect on hydrolytic degradation in the design of soft medical devices. RSC Adv. 2022, 12, 18154–18163. [Google Scholar] [CrossRef]
- Moins, S.; Hoyas, S.; Lemaur, V.; Orhan, B.; Delle Chiaie, K.; Lazzaroni, R.; Taton, D.; Dove, A.P.; Coulembier, O. Stereoselective ROP of rac- and meso-lactides using achiral TBD as catalyst. Catalysts 2020, 10, 620. [Google Scholar] [CrossRef]
- Schneiderman, D.K.; Hill, E.M.; Martello, M.T.; Hillmyer, M.A. Poly(lactide)-block-poly(ε-caprolactone-co-ε-decalactone)-block-poly(lactide) copolymer elastomers. Polym. Chem. 2015, 6, 3641–3651. [Google Scholar] [CrossRef]
- Pretsch, E.; Bühlmann, P.; Badertscher, M. IR spectroscopy. In Structure Determination of Organic Compounds, 4th ed.; Pretsch, E., Bühlmann, P., Badertscher, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 269–335. [Google Scholar] [CrossRef]
- Liu, C.; Lin, S.; Zhou, C.; Yu, W. Influence of catalyst on transesterification between poly(lactic acid) and polycarbonate under flow field. Polymer 2013, 54, 310–319. [Google Scholar] [CrossRef]
- Duda, A.; Kowalski, A. Thermodynamics and kinetics of ring-opening polymerization. In Handbook of Ring-Opening Polymerization; Dubois, P., Coulombier, O., Raquez, J.M., Eds.; Wiley: Weinheim, Germany, 2009; pp. 1–53. [Google Scholar] [CrossRef] [Green Version]
- Cicogna, F.; Giachi, G.; Rosi, L.; Passaglia, E.; Coiai, S.; Spiniello, R.; Prescimone, F.; Frediani, M. Macromolecular dyes by chromophore-initiated ring opening polymerization of l-lactide. Polymers 2020, 12, 1979. [Google Scholar] [CrossRef] [PubMed]
- Marxsen, S.F.; Song, D.; Zhang, X.; Flores, I.; Fernández, J.; Sarasua, J.R.; Müller, A.J.; Alamo, R.G. Crystallization rate minima of poly(ethylene brassylate) at temperatures transitioning between quantized crystal thicknesses. Macromolecules 2022, 55, 3958–3973. [Google Scholar] [CrossRef]
- Kayser, F.; Fleury, G.; Thongkham, S.; Navarro, C.; Martin-Vaca, B.; Bourissou, D. Reducing the crystallinity of PCL chains by copolymerization with substituted δ/ε-lactones and its impact on the phase separation of PCL-based block copolymers. Polym. Chem. 2022, 13, 2201–2214. [Google Scholar] [CrossRef]
- Xi, X.; Jiang, G.; Wang, X.; Hu, R.; Wang, R. Synthesis, characterization and degradation properties of poly(α-angelica lactone-co-ε-caprolactone) copolymers. Polym. Renew. Resour. 2013, 4, 49–60. [Google Scholar] [CrossRef]
- Wei, Z.; Jin, C.; Xu, Q.; Leng, X.; Wang, Y.; Li, Y. Synthesis, microstructure and mechanical properties of partially biobased biodegradable poly(ethylene brassylate-co-ε-caprolactone) copolyesters. J. Mech. Behav. Biomed. Mater. 2019, 91, 255–265. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles-González, F.; Rodríguez-Hernández, T.; Ledezma-Pérez, A.S.; Díaz de León, R.; De Jesús-Téllez, M.A.; López-González, H.R. Development of Biodegradable Polyesters: Study of Variations in Their Morphological and Thermal Properties through Changes in Composition of Alkyl-Substituted (ε-DL) and Non-Substituted (ε-CL, EB, L-LA) Monomers. Polymers 2022, 14, 4278. https://doi.org/10.3390/polym14204278
Robles-González F, Rodríguez-Hernández T, Ledezma-Pérez AS, Díaz de León R, De Jesús-Téllez MA, López-González HR. Development of Biodegradable Polyesters: Study of Variations in Their Morphological and Thermal Properties through Changes in Composition of Alkyl-Substituted (ε-DL) and Non-Substituted (ε-CL, EB, L-LA) Monomers. Polymers. 2022; 14(20):4278. https://doi.org/10.3390/polym14204278
Chicago/Turabian StyleRobles-González, Felipe, Teresa Rodríguez-Hernández, Antonio S. Ledezma-Pérez, Ramón Díaz de León, Marco A. De Jesús-Téllez, and Héctor Ricardo López-González. 2022. "Development of Biodegradable Polyesters: Study of Variations in Their Morphological and Thermal Properties through Changes in Composition of Alkyl-Substituted (ε-DL) and Non-Substituted (ε-CL, EB, L-LA) Monomers" Polymers 14, no. 20: 4278. https://doi.org/10.3390/polym14204278
APA StyleRobles-González, F., Rodríguez-Hernández, T., Ledezma-Pérez, A. S., Díaz de León, R., De Jesús-Téllez, M. A., & López-González, H. R. (2022). Development of Biodegradable Polyesters: Study of Variations in Their Morphological and Thermal Properties through Changes in Composition of Alkyl-Substituted (ε-DL) and Non-Substituted (ε-CL, EB, L-LA) Monomers. Polymers, 14(20), 4278. https://doi.org/10.3390/polym14204278