Stitching Repair for Delaminated Carbon Fiber/Bismaleimide Composite Laminates
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Delaminated Laminates
2.2. Stitching Repair
3. FEM Simulation
4. Results and Discussion
4.1. FEM Results
4.2. Effect of the Size of Stitching Holes
4.3. Effect of the Position and Number of Stitching Holes
4.4. Effect of Stitching Materials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Zhao, L.; Qiao, Y.; Bai, X.; Wang, D.; Qu, C.; Liu, C.; Wang, Y. Surface treatment of composites with bismaleimide resin-based wet peel ply for enhanced adhesive bonding performance. Polymers 2021, 13, 3488. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fan, W.; Ma, Y.; Xue, L.; Yuan, L.; Dang, W.; Meng, J. Influence of reinforcement structures and hybrid types on inter-laminar shear performance of carbon-glass hybrid fibers/bismaleimide composites under long-term thermo-oxidative aging. Polymers 2019, 11, 1288. [Google Scholar] [CrossRef] [PubMed]
- Balan, A.S.; Kannan, C.; Jain, K.; Chakraborty, S.; Joshi, S.; Rawat, K.; Alsanie, W.F.; Thakur, V.K. Numerical Modelling and Analytical Comparison of Delamination during Cryogenic Drilling of CFRP. Polymers 2021, 13, 3995. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.G.; Mayer, F.; Bismarck, A.; Czél, G. Effect of plasma-treatment of interleaved thermoplastic films on delamination in interlayer fibre hybrid composite laminates. Polymers 2020, 12, 2834. [Google Scholar] [CrossRef]
- Kwak, B.S.; Lee, G.E.; Kang, G.S.; Kweon, J.H. An investigation of repair methods for delaminated composite laminate under flexural load. Compos. Struct. 2019, 215, 249–257. [Google Scholar] [CrossRef]
- Caliskan, M. Evaluation of bonded and bolted repair techniques with finite element method. Mater. Des. 2006, 27, 811–820. [Google Scholar] [CrossRef]
- Borrie, D.; Al-Saadi, S.; Zhao, X.L.; Raman, R.K.; Bai, Y. Bonded CFRP/steel systems, remedies of bond degradation and behaviour of CFRP repaired steel: An overview. Polymers 2021, 13, 1533. [Google Scholar] [CrossRef]
- Whittingham, B.; Baker, A.A.; Harman, A.; Bitton, D. Micrographic studies on adhesively bonded scarf repairs to thick composite aircraft structure. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1419–1432. [Google Scholar] [CrossRef]
- Yoo, J.S.; Truong, V.H.; Park, M.Y.; Choi, J.H.; Kweon, J.H. Parametric study on static and fatigue strength recovery of scarf-patch-repaired composite laminates. Compos. Struct. 2016, 140, 417–432. [Google Scholar] [CrossRef]
- Park, S.S.; Choe, H.S.; Kwak, B.S.; Choi, J.H.; Kweon, J.H. Micro-bolt repair for delaminated composite plate under compression. Compos. Struct. 2018, 192, 245–254. [Google Scholar] [CrossRef]
- Thunga, M.; Bauer, A.; Obusek, K.; Meilunas, R.; Akinc, M.; Kessler, M.R. Injection repair of carbon fiber/bismaleimide composite panels with bisphenol E cyanate ester resin. Compos. Sci. Technol. 2014, 100, 174–181. [Google Scholar] [CrossRef]
- Bauer, A.; Thunga, M.; Obusek, K.; Akinc, M.; Kessler, M.R. Bisphenol E cyanate ester as a novel resin for repairing BMI/carbon fiber composites: Influence of cure temperature on adhesive bond strength. Polymer 2013, 54, 3994–4002. [Google Scholar] [CrossRef]
- Rider, A.N.; Wang, C.H.; Chang, P. Bonded repairs for carbon/BMI composite at high operating temperatures. Compos. Part A Appl. Sci. Manuf. 2010, 41, 902–912. [Google Scholar] [CrossRef]
- Riccio, A.; Scaramuzzino, F.; Perugini, P. Embedded delamination growth in composite panels under compressive load. Compos. Part B Eng. 2001, 32, 209–218. [Google Scholar] [CrossRef]
- Li, H.; Yao, Y.; Guo, L.; Zhang, Q.; Wang, B. The effects of delamination deficiencies on compressive mechanical properties of reinforced composite skin structures. Compos. Part B Eng. 2018, 155, 138–147. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; de Moura, M.F.S.F.; Neto, M.A. Buckling analysis of laminated composite plates submitted to compression after impact. Fibers Polym. 2014, 15, 560–565. [Google Scholar] [CrossRef]
- Koziol, M. Experimental study on the effect of stitch arrangement on mechanical performance of GFRP laminates manufactured on a basis of stitched preforms. J. Compos. Mater. 2012, 46, 1067–1078. [Google Scholar] [CrossRef]
- Xing, S.; Tang, J.; Xiao, J. Influence of boundary conditions on quasi-static indentation damage of composite laminates. J. Natl. Univ. Def. Technol. 2016, 38, 15–19. [Google Scholar]
- Cheng, X.Q.; Baig, Y.; Li, Z.N. Effects of stitching parameters on tensile strength of FRPs under hygrothermal conditions. In Proceedings of the 9th International Bhurban Conference on Applied Sciences and Technology, Islamabad, Pakistan, 9–12 January 2012. [Google Scholar]
- Cheng, X.; Ali, A.-M.; Li, Z. Residual strength of stitched laminates after low velocity impact. J. Reinf. Plast. Compos. 2009, 28, 1679–1688. [Google Scholar] [CrossRef]
- Wang, Y.; Yue, Z.F.; Li, L. Design of the Stitching Parameters Applied to the Laminates with Cut-Out. In Proceedings of the 2nd International Conference on Manufacturing Science and Engineering, Guilin, China, 9–11 April 2011. [Google Scholar]
- Tan, K.T.; Watanabe, N.; Iwahori, Y. Finite element model for compression after impact behaviour of stitched composites. Compos. Part B Eng. 2015, 79, 53–60. [Google Scholar] [CrossRef]
- Herwan, J.; Kondo, A.; Morooka, S.; Watanabe, N. Finite element analysis of mode II delamination suppression in stitched composites using cohesive zone model. Plast. Rubber Compos. 2015, 44, 390–396. [Google Scholar] [CrossRef]
- Tan, K.T.; Watanabe, N.; Iwahori, Y. Effect of stitch density and stitch thread thickness on low-velocity impact damage of stitched composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1857–1868. [Google Scholar] [CrossRef]
- Kang, T.J.; Lee, S.H. Effect of stitching on the mechanical and impact properties of woven laminate composite. J. Compos. Mater. 1994, 28, 1574–1587. [Google Scholar] [CrossRef]
- Zhu, X.P.; Guo, Z.X.; Cao, X.A.; Zhi, X.Z. Experimental Study on the Stitching Reinforcement of Composite Member with a Circular Hole. In Proceedings of the International Conference on Advances in Materials and Manufacturing Processes, Shenzhen, China, 6–8 November 2010. [Google Scholar]
- Yudhanto, A.; Lubineau, G.; Ventura, I.A.; Watanabe, N.; Iwahori, Y.; Hoshi, H. Damage characteristics in 3D stitched composites with various stitch parameters under in-plane tension. Compos. Part A Appl. Sci. Manuf. 2015, 71, 17–31. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Cox, B.N. A mechanistic interpretation of the comparative in-plane mechanical properties of 3D woven, stitched and pinned composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 709–728. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Z.; Song, H.X.; Peng, T.; Wang, L.X. Damage of composite under low-velocity impact and application of mechanical equivalent model. Eng. Mech. 2012, 29, 15–22. [Google Scholar]
Engineering Constant | ZA50GC/BMI | Degraded ZA50GC/BMI | Kevlar/EP |
---|---|---|---|
/MPa | 148,000 | 20,720 | 70,000 |
/MPa | 10,800 | 1512 | 4000 |
/MPa | 10,800 | 1512 | 4000 |
0.3 | 0.003 | 0.4 | |
0.3 | 0.042 | 0.4 | |
0.4 | 0.056 | 0.3 | |
/MPa | 6290 | 62.9 | 1700 |
/MPa | 6290 | 880.6 | 1700 |
/MPa | 3857 | 539.98 | 1430 |
Case.w/n/d | l/R (w) | Number of Holes (n) | d/mm |
---|---|---|---|
Case.0.3/6/2.5 | 0.3 | 6 | 2.5 |
Case.0.4/6/2.5 | 0.4 | 6 | 2.5 |
Case.0.5/6/2.5 | 0.5 | 6 | 2.5 |
Case.0.6/6/2.5 | 0.6 | 6 | 2.5 |
Case.0.8/6/2.5 | 0.8 | 6 | 2.5 |
Case.1.0/6/2.5 | 1.0 | 6 | 2.5 |
Case.0.6/4/2.5 | 0.6 | 4 | 2.5 |
Case.0.8/4/2.5 | 0.8 | 4 | 2.5 |
Case.0.6/8/2.5 | 0.6 | 8 | 2.5 |
Case.0.8/8/2.5 | 0.8 | 8 | 2.5 |
Case.0.8/6/1.5 | 0.8 | 6 | 1.5 |
Case.0.8/6/2.0 | 0.8 | 6 | 2.0 |
w = 0.3 | w = 0.4 | w = 0.5 | w = 0.6 | w = 0.8 | w = 1.0 | Strength | |
---|---|---|---|---|---|---|---|
S /MPa | 96.34 | 94.67 | 92.03 | 88.07 | 85.04 | 124.00 | 138 |
S /MPa | 71.38 | 71.06 | 71.13 | 72.37 | 73.07 | 80.92 | 254 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, J.; Xing, S.; An, S.; Chen, D.; Tang, J. Stitching Repair for Delaminated Carbon Fiber/Bismaleimide Composite Laminates. Polymers 2022, 14, 3557. https://doi.org/10.3390/polym14173557
Hua J, Xing S, An S, Chen D, Tang J. Stitching Repair for Delaminated Carbon Fiber/Bismaleimide Composite Laminates. Polymers. 2022; 14(17):3557. https://doi.org/10.3390/polym14173557
Chicago/Turabian StyleHua, Jiantao, Suli Xing, Shaohang An, Dingding Chen, and Jun Tang. 2022. "Stitching Repair for Delaminated Carbon Fiber/Bismaleimide Composite Laminates" Polymers 14, no. 17: 3557. https://doi.org/10.3390/polym14173557
APA StyleHua, J., Xing, S., An, S., Chen, D., & Tang, J. (2022). Stitching Repair for Delaminated Carbon Fiber/Bismaleimide Composite Laminates. Polymers, 14(17), 3557. https://doi.org/10.3390/polym14173557