Industry 4.0 In-Line AI Quality Control of Plastic Injection Molded Parts
Abstract
:1. Introduction
1.1. Process Parameters
1.2. Process Sensors
1.3. Application of Artificial Intelligence (AI) in PIM
1.4. Non-Iterative Optimization Methods
1.5. Iterative Optimization Methods
1.6. OPC UA and Industry 4.0
1.7. Research Objective
2. Materials and Methods
2.1. Plastics Injection Molding Process
2.2. OPC UA Communication Platform
2.3. Quality Feedback
2.3.1. Weight
2.3.2. Dimensional Properties
2.3.3. Surface Inspection
2.4. Process Automation
2.5. AI Models
- Surface quality (single output),
- Weight (single output),
- Profile lengths on the part (six outputs),
- Analog sensor data (163 outputs),
- Digital sensor data (136 outputs).
- Surface quality
- Weight
- Six lines’ lengths
2.6. Model Predictive Controller (MPC)
2.6.1. Controller Algorithm
Algorithm 1: Grid search |
INPUT: The current machine parameters M, the current machine run time r, the vector E for ambient sensor data, allowed machine parameters ranges, and a preference function f which rates the desirability of a prediction goal and new machine parameters. OUTPUT: New machine settings M’best FOR each machine parameters vector M’ so that each element is within the defined range DO | Compute the predicted surface quality s = Q1(M’, r, E) | Compute the predicted weight w = Q2(M’, r, E) | Compute the predicted dimensions d = Q3(M’, r, E) | IF the current loop iteration is the first or if f(s, w, d, M’, M) > f(sbest, wbest, | dbest, M’best, M) THEN | | Set M’best = M’. | | Set sbest = s. | | Set wbest = w. |_ |_ Set dbest = d. return M’best |
2.6.2. Extending Grid Search
2.6.3. Controller Confidence Scaling
Algorithm 2: Controller |
INPUT: Quality threshold for the quality goal (surface quality, weight, or dimensions), integer n for the minimum shot distance between the controller actions, and the reference function f as described in Algorithm 1. OUTPUT: No output, the algorithm runs perpetually. WHILE forever DO | Part Production | |_ A new part is produced | Quality Measurement | | The surface quality smeasured is inspected using CNN. | | The weight wmeasured is measured using the scale. | |_ The dimensions dmeasured are measured using the cylindrical dimension | measurement system. | Quality Prediction | | Let M be the vector of current machine parameters, r the running time of | | the machine, E the vector of current ambient sensor data, and A the vector | | of current analog sensor data. | | The surface quality spred is predicted by R1(M, r, E, A). | | The weight wpred is predicted by R2(M, r, E, A). | |_ The dimensions dpred are predicted by R3(M, r, E, A). | Quality Control | | IF the measured quality value is outside of the given threshold THEN | | | IF there has been a machine parameters update within the last n shots THEN | | | |_ Terminate this loop | | |IF the measured quality deviates strongly from the predicted quality THEN | | | |_ Warn the user: an external factor might influence the part quality. | | |_Use Algorithm 1 to calculate the new machine parameters based on M, | | r, E, and f. |_ |_ |_Set the new machine parameters. |
3. Experimental Setup
3.1. Experiment Devices and Material
3.2. Case Study
3.3. Process Sensors
3.3.1. Digital Sensor Data
3.3.2. Analog Sensor Data (Machine)
3.3.3. Analog Sensor Data (Mold)
3.3.4. Ambient Sensors
3.4. Design of Experiment (DOE)
3.5. Experiments for Controlling Strategies
4. Results and Discussion
4.1. DOE Results and Factors Correlations
4.2. In-Line Closed-Loop Control Results
4.2.1. Surface Quality Control
4.2.2. Linear Dimension Control, Strategy 1
4.2.3. Linear Dimension Control, Strategy 2
4.2.4. Weight Control
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistica. Plastics Industry in Europe; Statistica: London, UK, 2021. [Google Scholar]
- Zhao, P.; Zhang, J.; Dong, Z.; Huang, J.; Zhou, H.; Fu, J.; Turng, L.-S. Intelligent Injection Molding on Sensing, Optimization, and Control. Adv. Polym. Technol. 2020, 2020, 7023616. [Google Scholar] [CrossRef]
- Schmidberger, E. Auf Dem Weg Zur Null-Fehler-Produktion. Available online: https://industrieanzeiger.industrie.de/allgemein/auf-dem-weg-zur-null-fehler-produktion/ (accessed on 10 June 2022).
- Berger-Weber, G.; Saeidi Aminabadi, S. The Injection Mold as a Cyber Physical System. Using Simulation to Train Its Artificial Intelligence. In Proceedings of the 29th Leoben Kunststoffkolloquium, Leoben, Austria, 16 September 2021; Volume 29, p. 10. [Google Scholar]
- Saeidi Aminabadi, S.; Jafari-Tabrizi, A.; Gruber, D.P.; Berger-Weber, G.; Friesenbichler, W. An Automatic, Contactless, High-Precision, High-Speed Measurement System to Provide In-Line, As-Molded Three-Dimensional Measurements of a Curved-Shape Injection-Molded Part. Technologies 2022, 10, 95. [Google Scholar] [CrossRef]
- Haman, S. Prozessnahes Qualitätsmanagement Beim Spritzgießen. Ph.D. Thesis, Technischen Universität Chemnitz, Chemnitz, Germany, 2003. [Google Scholar]
- Heinzler, F.A. Modellgestützte Qualitätsregelung Durch Eine Adaptive, Druckgeregelte Prozessführung Beim Spritzgießen. Ph.D. Thesis, Universität Duisburg-Essen, Duisburg, Germany, 2014. [Google Scholar]
- Kenig, S.; Ben-David, A.; Omer, M.; Sadeh, A. Control of Properties in Injection Molding by Neural Networks. Eng. Appl. Artif. Intell. 2001, 14, 819–823. [Google Scholar] [CrossRef]
- Kazmer, D.O. Injection Mold Design Engineering. In Injection Mold Design Engineering, 2nd ed.; Kazmer, D.O., Ed.; Hanser Publishers: Munich, Germany, 2016; pp. I–XXIV. ISBN 978-1-56990-570-8. [Google Scholar]
- Kleppmann, W. Versuchsplanung Produkte und Prozesse Optimierem, 8th ed.; Carl Hanser Verlag GmbH: Munich, Germany, 2013. [Google Scholar]
- Kulkarni, S. Design of Experiments for Injection Molding. In Robust Process Development and Scientific Molding; Carl Hanser Verlag GmbH & Co. KG: Munich, Germany, 2010; Volume 8, pp. 145–167. ISBN 978-3-446-42275-9. [Google Scholar]
- Andrisano, A.O.; Gherardini, F.; Leali, F.; Pellicciari, M.; Vergnano, A. Design of Simulation Experiments Method for Injection Molding Process Optimization. Libr. Cortina 2011, 11, 476–486. [Google Scholar]
- Johnston, S.; McCready, C.; Hazen, D.; VanDerwalker, D.; Kazmer, D. On-Line Multivariate Optimization of Injection Molding. Polym. Eng. Sci. 2015, 55, 2743–2750. [Google Scholar] [CrossRef]
- Régnier, G.; Trotignon, J.P. Local Orthotropic Shrinkage Determination in Injected Moulded Polymer Plates. Polym. Test. 1993, 12, 383–392. [Google Scholar] [CrossRef]
- Jansen, K.M.B.; Van Dijk, D.J.; Husselman, M.H. Effect of Processing Conditions on Shrinkage in Injection Molding. Polym. Eng. Sci. 1998, 38, 838–846. [Google Scholar] [CrossRef]
- Liao, S.J.; Chang, D.Y.; Chen, H.J.; Tsou, L.S.; Ho, J.R.; Yau, H.T.; Hsieh, W.H.; Wang, J.T.; Su, Y.C. Optimal Process Conditions of Shrinkage and Warpage of Thin-Wall Parts. Polym. Eng. Sci. 2004, 44, 917–928. [Google Scholar] [CrossRef]
- Pomerleau, J.; Sanschagrin, B. Injection Molding Shrinkage of PP: Experimental Progress. Polym. Eng. Sci. 2006, 46, 1275–1283. [Google Scholar] [CrossRef]
- Sónia Ferraz Ferreira Alves, P. Shrinkage and Warpage Behaviour on Injection Moulding Parts; Universidade do Minho: Minho, Portugal, 2008. [Google Scholar]
- Kapadia, D. Shrinkage and Warpage in Polymer Injection Moulding: Models and Simulation; Johannes Kepler University Linz: Linz, Austria, 2019. [Google Scholar]
- Annicchiarico, D.; Alcock, J.R. Review of Factors That Affect Shrinkage of Molded Part in Injection Molding. Mater. Manuf. Process. 2014, 29, 662–682. [Google Scholar] [CrossRef]
- Ahmed, T.; Sharma, P.; Karmaker, C.L.; Nasir, S. Warpage Prediction of Injection-Molded PVC Part Using Ensemble Machine Learning Algorithm. Mater. Today Proc. 2020, 50, 565–569. [Google Scholar] [CrossRef]
- Masato, D.; Rathore, J.; Sorgato, M.; Carmignato, S.; Lucchetta, G. Analysis of the Shrinkage of Injection-Molded Fiber-Reinforced Thin-Wall Parts. Mater. Des. 2017, 132, 496–504. [Google Scholar] [CrossRef]
- Singh, G.; Pradhan, M.K.; Verma, A. Multi Response Optimization of Injection Moulding Process Parameters to Reduce Cycle Time and Warpage. Mater. Today Proc. 2018, 5, 8398–8405. [Google Scholar] [CrossRef]
- Azad, R.; Shahrajabian, H. Experimental Study of Warpage and Shrinkage in Injection Molding of HDPE/RPET/Wood Composites with Multiobjective Optimization. Mater. Manuf. Process. 2019, 34, 274–282. [Google Scholar] [CrossRef]
- Barghash, M.A.; Alkaabneh, F.A. Shrinkage and Warpage Detailed Analysis and Optimization for the Injection Molding Process Using Multistage Experimental Design. Qual. Eng. 2014, 26, 319–334. [Google Scholar] [CrossRef]
- Oliaei, E.; Heidari, B.S.; Davachi, S.M.; Bahrami, M.; Davoodi, S.; Hejazi, I.; Seyfi, J. Warpage and Shrinkage Optimization of Injection-Molded Plastic Spoon Parts for Biodegradable Polymers Using Taguchi, ANOVA and Artificial Neural Network Methods. J. Mater. Sci. Technol. 2016, 32, 710–720. [Google Scholar] [CrossRef]
- Huzaim, N.H.M.; Rahim, S.Z.A.; Musa, L.; Abdellah, A.E.; Abdullah, M.M.A.B.; Rennie, A.; Rahman, R.; Garus, S.; Błoch, K.; Sandu, A.V.; et al. Potential of Rapid Tooling in Rapid Heat Cycle Molding: A Review. Materials 2022, 15, 3725. [Google Scholar] [CrossRef]
- Evens, T.; Castagne, S.; Seveno, D.; Van Bael, A. Predicting the Replication Fidelity of Injection Molded Solid Polymer Microneedles. Int. Polym. Process. 2022, 37, 237–254. [Google Scholar] [CrossRef]
- Selvaraj, S.K.; Raj, A.; Rishikesh Mahadevan, R.; Chadha, U.; Paramasivam, V. A Review on Machine Learning Models in Injection Molding Machines. Adv. Mater. Sci. Eng. 2022, 2022, 1949061. [Google Scholar] [CrossRef]
- Karbasi, H.; Eng, P.; Reiser, H. Smart Mold: Real-Time In-Cavity Data Acquisition. Ph.D. Thesis, School of Engineering, Conestoga College ITAL Kitchener, Kitchener, ON, Canada, 2006. [Google Scholar]
- Nagorny, P.; Pillet, M.; Pairel, E.; Le Goff, R.; Loureaux, J.; Wali, M.; Kiener, P. Quality Prediction in Injection Molding. In Proceedings of the 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), Annecy, France, 26–28 June 2017; pp. 141–146. [Google Scholar]
- Mueller, F. Analysis, Implementation and Investigation of a Wireless In-Mold Sensor for Injection Molding. Ph.D. Thesis, Montanuniversitaet Leoben, Leoben, Austria, 2014. [Google Scholar]
- Ageyeva, T.; Horváth, S.; Kovács, J.G. In-Mold Sensors for Injection Molding: On the Way to Industry 4.0. Sensors 2019, 19, 3551. [Google Scholar] [CrossRef]
- Chang, H.; Su, Z.; Lu, S.; Zhang, G. Intelligent Predicting of Product Quality of Injection Molding Recycled Materials Based on Tie-Bar Elongation. Polymers 2022, 14, 679. [Google Scholar] [CrossRef]
- Petrova, T.; Kazmer, D. Hybrid Neural Models for Pressure Control in Injection Molding. Adv. Polym. Technol. 1999, 18, 19–31. [Google Scholar] [CrossRef]
- Mok, S.L.; Kwong, C.K.; Lau, W.S. Review of Research in the Determination of Process Parameters for Plastic Injection Molding. Adv. Polym. Technol. 1999, 18, 225–236. [Google Scholar] [CrossRef]
- Chen, Z.; Turng, L.-S. A Review of Current Developments in Process and Quality Control for Injection Molding. Adv. Polym. Technol. 2005, 24, 165–182. [Google Scholar] [CrossRef]
- Ribeiro, B. Support Vector Machines for Quality Monitoring in a Plastic Injection Molding Process. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2005, 35, 401–410. [Google Scholar] [CrossRef]
- Yen, C.; Lin, J.C.; Li, W.; Huang, M.F. An Abductive Neural Network Approach to the Design of Runner Dimensions for the Minimization of Warpage in Injection Mouldings. J. Mater. Process. Technol. 2006, 174, 22–28. [Google Scholar] [CrossRef]
- Chen, W.-C.; Tai, P.-H.; Wang, M.-W.; Deng, W.-J.; Chen, C.-T. A Neural Network-Based Approach for Dynamic Quality Prediction in a Plastic Injection Molding Process. Expert Syst. Appl. 2008, 35, 843–849. [Google Scholar] [CrossRef]
- Altan, M. Reducing Shrinkage in Injection Moldings via the Taguchi, ANOVA and Neural Network Methods. Mater. Des. 2010, 31, 599–604. [Google Scholar] [CrossRef]
- Özek, C.; Çelık, Y.H. Calculating Molding Parameters in Plastic Injection Molds with ANN and Developing Software. Mater. Manuf. Process. 2012, 27, 160–168. [Google Scholar] [CrossRef]
- Ogorodnyk, O.; Martinsen, K. Monitoring and Control for Thermoplastics Injection Molding A Review. Procedia CIRP 2018, 67, 380–385. [Google Scholar] [CrossRef]
- Gim, J.; Rhee, B. Novel Analysis Methodology of Cavity Pressure Profiles in Injection-Molding Processes Using Interpretation of Machine Learning Model. Polymers 2021, 13, 3297. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Zhou, X.; Liu, J.; Zhang, Y.; Li, D.; Zhou, H. A Reinforcement Learning Decision Model for Online Process Parameters Optimization from Offline Data in Injection Molding. Appl. Soft Comput. 2019, 85, 105828. [Google Scholar] [CrossRef]
- Dang, X.-P. General Frameworks for Optimization of Plastic Injection Molding Process Parameters. Simul. Model. Pract. Theory 2014, 41, 15–27. [Google Scholar] [CrossRef]
- Chen, W.C.; Lin, Y.F.; Liou, P.H. A Multi-Objective Quality Optimization System for Injection Molding Process Parameters. Adv. Mater. Res. 2014, 945–949, 478–483. [Google Scholar] [CrossRef]
- Lu, N.; Gong, G.; Yang, Y.; Lu, J. Multi-Objective Process Parameter Optimization for Energy Saving in Injection Molding Process. J. Zhejiang Univ. Sci. A 2012, 13, 382–394. [Google Scholar] [CrossRef]
- Mehat, N.M.; Kamaruddin, S. Quality Control and Design Optimisation of Plastic Product Using Taguchi Method: A Comprehensive Review. Int. J. Plast. Technol. 2012, 16, 194–209. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Tsai, K.-M.; Luo, H.-J. An Inverse Model for Injection Molding of Optical Lens Using Artificial Neural Network Coupled with Genetic Algorithm. J. Intell. Manuf. 2014, 28, 473–487. [Google Scholar] [CrossRef]
- Chen, W.-C.; Nguyen, M.-H.; Chiu, W.-H.; Chen, T.-N.; Tai, P.-H. Optimization of the Plastic Injection Molding Process Using the Taguchi Method, RSM, and Hybrid GA-PSO. Int. J. Adv. Manuf. Technol. 2016, 83, 1873–1886. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, J.C. Fuzzy Neural Network-Based in-Process Mixed Material-Caused Flash Prediction (FNN-IPMFP) in Injection Molding Operations. Int. J. Adv. Manuf. Technol. 2006, 29, 308–316. [Google Scholar] [CrossRef]
- Vagelatos, G.A.; Rigatos, G.G.; Tzafestas, S.G. Incremental Fuzzy Supervisory Controller Design for Optimizing the Injection Molding Process. Expert Syst. Appl. 2001, 20, 207–216. [Google Scholar] [CrossRef]
- Li, D.; Zhou, H.; Zhao, P.; Li, Y. A Real-Time Process Optimization System for Injection Molding. Polym. Eng. Sci. 2009, 49, 2031–2040. [Google Scholar] [CrossRef]
- Wang, S.; Ying, J.; Chen, Z.; Cai, K. Grey Fuzzy PI Control for Packing Pressure during Injection Molding Process. J. Mech. Sci. Technol. 2011, 25, 1061–1068. [Google Scholar] [CrossRef]
- Bangert, P.; Cajaraville, P.; Dormann, B.; Kohler, M.; Imgrund, P.; Haack, J.; Volkert, J.; Lopez, O.; Rodriguez, P.; Martinez, L.; et al. Real-Time Quality Control of Injection Molding. In Proceedings of the XIX Conference on Machine Tools and Manufacturing Technologies, San Sebastian, Spain, 10 June 2013; p. 7. [Google Scholar]
- Moreira, E.E.; Alves, F.S.; Martins, M.; Ribeiro, G.; Pina, A.; Aguiam, D.E.; Sotgiu, E.; Fernandes, E.P.; Gaspar, J. Industry 4.0: Real-Time Monitoring of an Injection Molding Tool for Smart Predictive Maintenance. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; pp. 1209–1212. [Google Scholar]
- Hopmann, C.; Ressmann, A.; Reiter, M.; Stemmler, S.; Abel, D. A Self-Optimising Injection Moulding Process with Model-Based Control System Parameterisation. Int. J. Comput. Integr. Manuf. 2016, 29, 1190–1199. [Google Scholar] [CrossRef]
- Hoppe, S. There Is No Industrie 4.0 without OPC UA; Opcfoundation: Scottsdale, AZ, USA, 2017. [Google Scholar]
- Müllers, B. Euromap 77: OPC UA Interfaces for Plastics and Rubber Machinery—Data Exchange between Injection Moulding Machines and MES. 2020. Available online: https://www.euromap.org/euromap77 (accessed on 15 March 2022).
- Müllers, B. Euromap83: OPC UA for Plastics and Rubber Machinery—General Type Definitions. 2021. Available online: https://www.euromap.org/euromap83 (accessed on 15 March 2022).
- Kazmer, D.O. Plastics Manufacturing Systems Engineering; Carl Hanser Verlag GmbH & Co., KG: Munich, Germany, 2009; ISBN 978-3-446-42014-4. [Google Scholar]
- Brinkmann, O.B.; Schmachtenberg, O. International Plastics Handbook. In Hanser; Carl Hanser Verlag GmbH & Co., KG: Munich, Germany, 2006; ISBN 978-3-446-22905-1. [Google Scholar]
- Gruber, D.P. Method for Automatically Detecting a Defect on a Surface of a Molded Part. WO2010102319, 16 September 2010. [Google Scholar]
- Gruber, D.P. Method and Device for the Optical Analysis of the Surface of an Object. EP14186013, 1 April 2015. [Google Scholar]
- Haselmann, M.; Gruber, D.P. Pixel-Wise Defect Detection by CNNs without Manually Labeled Training Data. Appl. Artif. Intell. 2019, 33, 548–566. [Google Scholar] [CrossRef]
- Gruber, D.P.; Haselmann, M. Inspection of Transparent Objects with Varying Light Scattering Using a Frangi Filter. J. Imaging 2021, 7, 27. [Google Scholar] [CrossRef]
- Macher, J.; Gruber, D.P.; Altenbuchner, T.; Pacher, G.A.; Berger, G.R.; Friesenbichler, W. A Novel Sink Mark Model for High Gloss Injection Molded Parts—Correlation of Deflectometric and Topographic Measurements. Polym. Test. 2014, 39, 12–19. [Google Scholar] [CrossRef]
- Gruber, D.P.; Buder-Stroisznigg, M.; Wallner, G.; Jandel, B.S.L.; Lang, R.W. Characterization of Gloss Properties of Differently Treated Polymer Coating Surfaces by Surface Clarity Measurement Methodology. Appl. Opt. 2012, 51, 4833–4840. [Google Scholar] [CrossRef]
- Gruber, D.P.; Steiner, A.; Saeidi Aminabadi, S.; Friesenbichler, W. A New Quality Predictor and Controller by Means of Artificial Intelligence for an Injection Molding Process. In Proceedings of the 30th Leoben-Conference on Polymer Engineering and Science, Leoben, Austria, 14 June 2022. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Berger, G.R.; Gruber, D.P.; Friesenbichler, W.; Teichert, C.; Burgsteiner, M. Replication of Stochastic and Geometric Micro Structures—Aspects of Visual Appearance. Int. Polym. Process. 2011, 26, 313–322. [Google Scholar] [CrossRef]
- Liparoti, S.; Speranza, V.; Pantani, R.; Titomanlio, G. Multi-Scale Simulation of Injection Molding Process with Micro–Features Replication: Relevance of Rheological Behaviour and Crystallization. Polymers 2021, 13, 3236. [Google Scholar] [CrossRef]
Action | Duration | Unit | Parallel Actions |
---|---|---|---|
Dimensional measurement | 44 | Second | Robot handling and weight measurement |
Camera scan | 9 | Second | Robot handling and weight measurement |
Weight measurement | 8 | Second | Robot handling |
Robot handling | 42 | Second | Measurements and part production |
Production of the part | 76~95 | Second | A complete measurement process |
Factor | Unit | −1 | −0.42 | 0 | +0.42 | +1 |
---|---|---|---|---|---|---|
Melt temperature | °C | 240 | 246 | 250 | 254 | 260 |
Holding pressure | bar | 300 | 358 | 400 | 442 | 500 |
Time of holding pressure | s | 14 | 18 | 22 | 26 | 30 |
Mold temperature | °C | 84 | 90 | 94 | 98 | 104 |
Injection speed | mm/s | 15 | 22 | 27 | 32 | 39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aminabadi, S.S.; Tabatabai, P.; Steiner, A.; Gruber, D.P.; Friesenbichler, W.; Habersohn, C.; Berger-Weber, G. Industry 4.0 In-Line AI Quality Control of Plastic Injection Molded Parts. Polymers 2022, 14, 3551. https://doi.org/10.3390/polym14173551
Aminabadi SS, Tabatabai P, Steiner A, Gruber DP, Friesenbichler W, Habersohn C, Berger-Weber G. Industry 4.0 In-Line AI Quality Control of Plastic Injection Molded Parts. Polymers. 2022; 14(17):3551. https://doi.org/10.3390/polym14173551
Chicago/Turabian StyleAminabadi, Saeid Saeidi, Paul Tabatabai, Alexander Steiner, Dieter Paul Gruber, Walter Friesenbichler, Christoph Habersohn, and Gerald Berger-Weber. 2022. "Industry 4.0 In-Line AI Quality Control of Plastic Injection Molded Parts" Polymers 14, no. 17: 3551. https://doi.org/10.3390/polym14173551
APA StyleAminabadi, S. S., Tabatabai, P., Steiner, A., Gruber, D. P., Friesenbichler, W., Habersohn, C., & Berger-Weber, G. (2022). Industry 4.0 In-Line AI Quality Control of Plastic Injection Molded Parts. Polymers, 14(17), 3551. https://doi.org/10.3390/polym14173551