A Three-Parameter Weibull Distribution Method to Determine the Fracture Property of PMMA Bone Cement
Abstract
:1. Introduction
2. The Theoretical Background of PMMA Distribution Characteristics
2.1. Intrinsic Causes of PMMA Fracture Discreteness
2.2. A Brief Description of the Boundary Effect Model (BEM)
3. Statistical Analysis of Test Data
3.1. Raw Data of the Experiment
3.2. Raw Data of the Experiment
4. Three-Parameter Weibull Distribution Prediction of PMMA Bone Cement Fracture
5. Discussion
6. Conclusions
- Due to the random distribution of PMMA bone cement particles, a three-parameter Weibull distribution method was employed to analyze the discrete characteristic of the fracture property. For different values of , when the characteristic crack was , tensile strength and fracture toughness with the smallest coefficient of variation ( CV ) were obtained. The minimum CV values for and were 0.1485 and 0.1492, respectively.
- The mean value (= 43.23 ), minimum value (= 26.29 ), standard deviation (= 6.42 ) of tensile strength , and these values of fracture toughness ( = 1.77 , = 1.02 , = 0.2644 ) were determined simultaneously from the three-parameter Weibull distribution method by using the characteristic crack and the fictitious crack growth . Furthermore, the lower safety control index of PMMA bone cement was obtained based on the statistical properties of the minimum value of and .
- The whole prediction breaking curve with 95% reliability for PMMA bone cement was obtained. Additionally, based on the simplified prediction model, the prediction line between peak load and equivalent area was obtained with 95% reliability. Nearly all experimental data are located within the scope of a 95% confidence interval. All experimental data were gained above the lower limit for safe prediction value.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewis, G. Properties of acrylic bone cement: State of the art review. J. Biomed. Mater. Res. A 1997, 38, 155–182. [Google Scholar]
- Yi, S.; Rim, D.C.; Park, S.W.; Murovic, J.A.; Lim, J.; Park, J. Biomechanical Comparisons of Pull Out Strengths After Pedicle Screw Augmentation with Hydroxyapatite, Calcium Phosphate, or Polymethylmethacrylate in the Cadaveric Spine. World Neurosurg. 2015, 83, 976–981. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhai, Q.; Hu, M.; Cao, C.; Wang, J.; Yang, H.; Li, B. Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: Current status and future developments. J. Orthop. Transl. 2015, 3, 1–11. [Google Scholar]
- Ali, U.; Juhanni, K.; Abd, B.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Roozbahani, M.; Kharaziha, M.; Emadi, R. Fabrication and characterization of laponite-calcium phosphate based cement for filling bone defects. Mater. Today Proc. 2018, 5, 15754–15760. [Google Scholar] [CrossRef]
- Roozbahani, M.; Alehosseini, M.; Kharaziha, M. Nano-calcium phosphate bone cement based on Si-stabilized α-tricalcium phosphate with improved mechanical properties. Mat. Sci. Eng. C-Mater. 2017, 81, 532–541. [Google Scholar]
- Dunne, N.J.; Orr, J.F. Curing characteristics of acrylic bone cement. J. Mater. Sci. Mater. Med. 2002, 13, 17–22. [Google Scholar] [CrossRef]
- Azuara, G.; García-García, J.; Ibarra, B.; Parra-Ruiz, F.J.; Asúnsolo, A.; Ortega, M.A.; Vázquez-Lasa, B.; Buján, J.; San Román, J.; de la Torre, B. Experimental study of the application of a new bone cement loaded with broad spectrum antibiotics for the treatment of bone infection. Rev. Esp. Cir. Ortop. Traumatol. 2019, 63, 95–103. [Google Scholar]
- Thielen, T.; Maas, S.; Waldmann, D.; Anagnostakos, K.; Kelm, J. Development of a reinforced PMMA-based hip spacer adapted to patients’ needs—ScienceDirect. Med. Eng. Phys. 2009, 31, 930–936. [Google Scholar] [CrossRef]
- Kim, S.; Baril, C.; Rudraraju, S.; Ploeg, H.L. Influence of Porosity on Fracture Toughness and Fracture Behavior of Antibiotic-Loaded PMMA Bone Cement. J. Biomech. Eng. 2022, 144, 011006–011014. [Google Scholar]
- Biggs, P.; Jones II, L.; Lewis, G. An autonomically-healed PMMA bone cement: Influence of the crystal size of Grubbs’ catalyst on fracture toughness and polymerisation rate. Int. J. Nano Biomater. 2009, 2, 494–504. [Google Scholar] [CrossRef]
- Bokam, P.; Germaneau, A.; Breque, C.; Rigoard, P.; Vendeuvre, T.; Valle, V. Fracture behavior of cancellous bone and cancellous bone-PMMA bone cement interface: An experimental study using an integrated methodology (wedge splitting test and Heaviside-based digital image correlation). J. Mech. Behav. Biomed. Mater. 2021, 122, 104663. [Google Scholar] [PubMed]
- Lewis, G.; Mladsi, S. Correlation between impact strength and fracture toughness of PMMA-based bone cements. Biomaterials 2000, 21, 775–781. [Google Scholar] [CrossRef]
- Lewis, G.; Nyman, J.; Hai, H.T. The apparent fracture toughness of acrylic bone cement: Effect of three variables. Biomaterials 1998, 19, 961–967. [Google Scholar] [CrossRef]
- Lewis, G. Effect of lithotriptor treatment on the fracture toughness of acrylic bone cement. Biomaterials 1992, 13, 225–229. [Google Scholar] [CrossRef]
- Wang, C.T.; Pilliar, R.M. Fracture toughness of acrylic bone cements. J. Mater. Sci. 1989, 24, 3725–3738. [Google Scholar] [CrossRef]
- Kindt-Larsen, T.; Smith, D.B.; Jensen, J.S. Innovations in acrylic bone cement and application equipment. J. Appl. Biomater. 1995, 6, 75–83. [Google Scholar] [CrossRef]
- Harper, E.J.; Braden, M.; Bonfield, W.; Wahlig, E.D. Influence of sterilization upon a range of properties of experimental bone cements. J. Mater. Sci. Mater. Med. 1997, 8, 849–853. [Google Scholar]
- Kjellson, F.; Abdulghani, S.; Tanner, K.E.; Mccarthy, I.D.; Lidgren, L. Effect of iodixanol particle size on the mechanical properties of a PMMA based bone cement. J. Mater. Sci. Mater. Med. 2007, 18, 1043–1051. [Google Scholar]
- Harper, E.J.; Braden, M.; Bonfield, W. Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution: Influence of a silane coupling agent. J. Mater. Sci. Mater. Med. 2000, 11, 491–497. [Google Scholar] [CrossRef]
- Kjellson, F.; Wang, J.S.; Almén, T.; Mattsson, A.; Lidgren, L. Tensile properties of a bone cement containing non-ionic contrast media. J. Mater. Sci. Mater. Med. 2001, 12, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Amaral, P.M.; Fernandes, J.C.; Rosa, L.G. Weibull statistical analysis of granite bending strength. Rock Mech. Rock Engng. 2008, 41, 917–928. [Google Scholar] [CrossRef]
- Blasi, P.; Frisa Morandini, A.; Mancini, R.; Marini, P. An experimental investigation on marble testing for bending strength. RocMaquina 2000, 38, 20–25. [Google Scholar]
- Li, L.; Guan, J.; Yuan, P.; Yin, Y.; Li, Y. A Weibull distribution-based method for the analysis of concrete fracture. Eng. Fract. Mech. 2021, 256, 107964. [Google Scholar] [CrossRef]
- Xu, J.; He, X. Size effect on the strength of a concrete member. Eng. Fract. Mech. 1990, 35, 687–695. [Google Scholar] [CrossRef]
- Lei, W.S.; Zhang, P.; Yu, Z.; Qian, G. Statistics of ceramic strength: Use ordinary Weibull distribution function or Weibull statistical fracture theory? Ceram. Int. 2020, 46, 20751–20768. [Google Scholar] [CrossRef]
- Hu, X.Z. Determination of pore distribution n Yttria-stabilized zirconia from the Weibull strength distribution. Mater. Forum 1992, 16, 313. [Google Scholar]
- Gorjan, L.; Ambrožič, M. Bend strength of alumina ceramics: A comparison of Weibull statistics with other statistics based on very large experimental data set. J. Eur. Ceram. Soc. 2012, 30, 1221–1227. [Google Scholar] [CrossRef]
- Goel, S.; Singh, S.P.; Singh, P. Fatigue Analysis of Plain and Fiber-Reinforced Self-Consolidating Concrete. ACI Mater. J. 2012, 109, 573–582. [Google Scholar]
- Li, H.; Zhang, M.; Ou, J. Flexural fatigue performance of concrete containing nano-particles for pavement. Int. J. Fatigue 2007, 29, 1292–1301. [Google Scholar] [CrossRef]
- Bala, N.; Napiah, M. Fatigue life and rutting performance modelling of nanosilica/polymer composite modified asphalt mixtures using Weibull distribution. Int. J. Pavement Eng. 2018, 21, 497–506. [Google Scholar]
- Jin, J.; Ma, Y.; Wen, H.; Gong, P.; Wang, X. Mechanical properties and Weibull reliability analysis of tungsten-particle reinforced Zr-based bulk metallic glass composites. Mater. Lett. 2022, 306, 130879. [Google Scholar] [CrossRef]
- Carmona, A.R.; Colorado, H. Luffa fibers as promising reinforcement for polymer composites: Mechanical characterization of NaOH treated and untreated dumbbell test-pieces with Weibull statistics. J. Compos. Mater. 2020, 55, 1667–1681. [Google Scholar] [CrossRef]
- Sia, C.; Wong, J.S.Y.; Thangavelu, S.K.; Chong, K.H. Weibull Strength Analysis of Pineapple Leaf Fiber. Mater. Sci. Forum 2021, 1030, 45–52. [Google Scholar] [CrossRef]
- Wang, F.; Shao, J.X. Modified Weibull Distribution for Analyzing the Tensile Strength of Bamboo Fibers. Polymers 2014, 6, 3005–3018. [Google Scholar] [CrossRef]
- Wang, F.; Ding, J.; Chen, Z.Q. Statistical Analysis of the Progressive Failure Behavior for Fiber-Reinforced Polymer Composites under Tensile Loading. Polymers 2014, 6, 145–159. [Google Scholar]
- Álvarez-Vázquez, A.; Muñiz-Calvente, M.; Fernández Fernández, P.; Fernández-Canteli, A.; Lamela-Rey, M.J.; Pintado, J.M. Probabilistic Assessment of Fracture Toughness of Epoxy Resin EPOLAM 2025 Including the Notch Radii Effect. Polymers 2021, 13, 1857. [Google Scholar] [CrossRef]
- Merta, I.; Berger, L.; Heidfogel, G.; Kuhn, K.D.; Lewis, G.; Tschegg, E.K. Size and boundary effects on notch tensile strength and fracture properties of PMMA bone cement. Polym. Test. 2017, 59, 441–448. [Google Scholar]
- Guan, J.; Yuan, P.; Hu, X.; Qing, L.; Yao, X. Statistical analysis of concrete fracture using normal distribution pertinent to maximum aggregate size. Theor. Appl. Fract. Mech. 2019, 101, 236–253. [Google Scholar] [CrossRef]
- Mousa, W.F.; Kobayashi, M.; Shinzato, S.; Kamimura, M. Biological and mechanical properties of PMMA-based bioactive bone cements. Biomaterials 2000, 21, 2137–2146. [Google Scholar] [CrossRef]
- Guan, J.; Hu, X.; Li, Q. In-depth analysis of notched 3-p-b concrete fracture. Eng. Fract. Mech. 2016, 165, 57–71. [Google Scholar] [CrossRef]
- Hu, X.; Guan, J.; Wang, Y.; Keating, A.; Yang, S. Comparison of Boundary and Size Effect Models Based on New Developments. Eng. Fract. Mech. 2017, 175, 146–167. [Google Scholar] [CrossRef]
No. | Main Ingredient | Type of Test Specimen | Tensile Strength | Fracture Toughness | Source | Remark |
---|---|---|---|---|---|---|
1 | Palacos®R | 3-p-b * | 2.70 ± 0.22 | Kim [10] | ||
2 | Simplex®P | WS * | 2.15 ± 0.11 | Biggs [11] | ||
3 | Kyphon Xpede Bone Cement | WS * | 1.11 ± 0.03 | Pba [12] | ||
4 | Palacos®R | WS * | 1.85 ± 0.12 | Lewis [13] | ||
5 | Palacos®R CMW3 Osteopal | CNSR * | 1.75 ± 0.07 1.92 ± 0.10 | Lewis [14] | ||
6 | Palacos®R | CNSR * | 1.81 ± 0.14 | Lewis [15] | ||
7 | Simplex®P | CNSR * | 1.30 ± 0.26① 1.00 ± 0.05② 1.01 ± 0.04③ | Wang [16] | ① UHM specimens ② CHM specimens ③ CFG specimens | |
8 | Palacos®R CMW-1 Simplex P Zimmer D | CNSR * | 33 ± 2 40 ± 8 | 1.59 ± 0.07④ 1.73 ± 0.17⑤ | Kindt- Larsen [17] | ④ Open bowl mixing ⑤ Vacuum mixing |
9 | Palacos®R | DB * | 51.4 ± 3.47 | Harper [18] | ||
10 | IDX Palacos®R | 4-p-b * | 43.4 ± 1.6 | Jellson [19] | ||
11 | commercially available PMMA | DB * | 44.7 ± 4.3 | Harper [20] | ||
12 | Palacos®R IDX IHX | DB * | 42 | Kjellson [21] |
Height (W) (mm) | Initial Crack Length | Peak Load | Height (W) (mm) | Initial Crack Length | Height (W) (mm) | Initial Crack Length | (N) | |
---|---|---|---|---|---|---|---|---|
15 | 2 | 352.47 | 29 | 5 | 521.23 | 36 | 11 | 318.81 |
325.47 | 518.00 | 298.50 | ||||||
328.45 | 453.23 | 290.32 | ||||||
372.29 | 447.03 | 291.82 | ||||||
5 | 211.80 | 8 | 422.57 | 14 | 285.38 | |||
207.34 | 361.23 | 282.65 | ||||||
173.90 | 356.99 | 254.17 | ||||||
171.68 | 354.99 | 231.63 | ||||||
8 | 89.19 | 11 | 314.48 | 17 | 216.53 | |||
91.43 | 292.38 | 218.52 | ||||||
71.36 | 283.60 | 194.00 | ||||||
69.13 | 272.27 | 194.49 | ||||||
22 | 2 | 499.78 | 14 | 223.65 | 20 | 171.69 | ||
457.27 | 219.08 | 160.56 | ||||||
463.97 | 215.19 | 133.80 | ||||||
450.63 | 201.33 | 113.25 | ||||||
5 | 361.51 | 17 | 140.92 | 23 | 107.06 | |||
314.95 | 129.47 | 102.60 | ||||||
299.04 | 118.85 | 92.95 | ||||||
287.90 | 122.84 | 83.53 | ||||||
8 | 245.13 | 36 | 20 | 96.19 | 26 | 82.54 | ||
245.73 | 83.06 | |||||||
232.10 | 75.20 | 71.40 | ||||||
230.31 | 72.18 | |||||||
11 | 216.92 | 2 | 693.65 | 29 | 42.91 | |||
158.99 | 691.56 | |||||||
152.10 | 580.10 | 35.23 | ||||||
152.80 | 528.34 | |||||||
14 | 84.77 | 5 | 515.45 | \ | \ | \ | ||
85.47 | 443.64 | |||||||
78.76 | 418.11 | |||||||
74.65 | 398.80 | |||||||
29 | 2 | 670.70 | 8 | 381.21 | \ | \ | \ | |
637.41 | 376.26 | |||||||
635.20 | 358.93 | |||||||
621.61 | 332.43 |
1 | 2 | 3 | 4 | ||
---|---|---|---|---|---|
0.5 | 155.61 | 154.64 | 153.69 | 152.76 | |
85.40 | 83.88 | 82.30 | 80.77 | ||
23.82 | 23.76 | 23.70 | 23.65 | ||
0.1531 | 0.1536 | 0.1542 | 0.1548 | ||
1.59 | 1.58 | 1.57 | 1.57 | ||
0.86 | 0.79 | 0.78 | 0.77 | ||
0.2461 | 0.2454 | 0.2447 | 0.2441 | ||
0.1543 | 0.1549 | 0.1554 | 0.1559 | ||
1.0 | 110.90 | 110.21 | 109.53 | 108.87 | |
61.59 | 60.56 | 59.43 | 58.39 | ||
16.89 | 16.84 | 16.80 | 16.76 | ||
0.1523 | 0.1528 | 0.1534 | 0.1539 | ||
1.61 | 1.60 | 1.59 | 1.58 | ||
0.82 | 0.81 | 0.80 | 0.78 | ||
0.2468 | 0.2460 | 0.2453 | 0.2446 | ||
0.1536 | 0.1540 | 0.1545 | 0.1550 | ||
1.5 | 91.25 | 90.68 | 90.12 | 89.57 | |
51.32 | 50.41 | 49.51 | 48.65 | ||
13.83 | 13.79 | 13.75 | 13.71 | ||
0.1516 | 0.1521 | 0.1526 | 0.1531 | ||
1.62 | 1.61 | 1.60 | 1.59 | ||
0.84 | 0.82 | 0.81 | 0.80 | ||
0.2476 | 0.2467 | 0.2460 | 0.2452 | ||
0.1529 | 0.1533 | 0.1538 | 0.1542 | ||
2.0 | 79.62 | 79.13 | 78.64 | 78.16 | |
45.26 | 44.50 | 43.71 | 42.95 | ||
12.02 | 11.98 | 11.94 | 11.91 | ||
0.1510 | 0.1514 | 0.1518 | 0.1523 | ||
1.63 | 1.62 | 1.61 | 1.60 | ||
0.85 | 0.84 | 0.83 | 0.81 | ||
0.2485 | 0.2476 | 0.2467 | 0.2459 | ||
0.1523 | 0.1527 | 0.1531 | 0.1537 | ||
2.5 | 71.75 | 71.30 | 70.86 | 70.43 | |
41.17 | 40.48 | 39.81 | 39.16 | ||
10.79 | 10.75 | 10.72 | 10.68 | ||
0.1504 | 0.1508 | 0.1512 | 0.1516 | ||
1.64 | 1.63 | 1.62 | 1.61 | ||
0.87 | 0.85 | 0.84 | 0.83 | ||
0.2494 | 0.2485 | 0.2476 | 0.2467 | ||
0.1517 | 0.1521 | 0.1525 | 0.1532 | ||
3.0 | 65.98 | 65.57 | 65.16 | 64.77 | |
38.18 | 37.58 | 37.00 | 36.39 | ||
9.90 | 9.85 | 9.82 | 9.78 | ||
0.1500 | 0.1503 | 0.1506 | 0.1510 | ||
1.66 | 1.65 | 1.64 | 1.63 | ||
0.88 | 0.87 | 0.86 | 0.84 | ||
0.2505 | 0.2495 | 0.2485 | 0.2476 | ||
0.1512 | 0.1516 | 0.1519 | 0.1519 | ||
4.0 | 57.97 | 57.60 | 57.25 | 56.90 | |
34.06 | 33.56 | 33.07 | 32.53 | ||
8.65 | 8.61 | 8.57 | 8.54 | ||
0.1492 | 0.1495 | 0.1497 | 0.1500 | ||
1.68 | 1.67 | 1.66 | 1.65 | ||
0.91 | 0.90 | 0.88 | 0.87 | ||
0.2528 | 0.2516 | 0.2505 | 0.2495 | ||
0.1505 | 0.1507 | 0.1509 | 0.1512 | ||
5.0 | 52.57 | 52.24 | 51.92 | 51.60 | |
31.28 | 30.85 | 30.41 | 29.97 | ||
7.82 | 7.78 | 7.74 | 7.70 | ||
0.1488 | 0.1489 | 0.1491 | 0.1493 | ||
1.70 | 1.69 | 1.68 | 1.67 | ||
0.94 | 0.93 | 0.91 | 0.90 | ||
0.2554 | 0.2540 | 0.2528 | 0.2517 | ||
0.1499 | 0.1500 | 0.1503 | 0.1505 | ||
6.0 | 48.65 | 48.34 | 48.04 | 47.74 | |
29.23 | 28.87 | 28.48 | 28.10 | ||
7.22 | 7.18 | 7.14 | 7.10 | ||
0.1485 | 0.1485 | 0.1486 | 0.1487 | ||
1.73 | 1.72 | 1.71 | 1.69 | ||
0.97 | 0.96 | 0.94 | 0.93 | ||
0.2582 | 0.2567 | 0.2553 | 0.2540 | ||
0.1495 | 0.1496 | 0.1497 | 0.1499 | ||
7.0 | 45.63 | 45.34 | 45.06 | 44.78 | |
27.62 | 27.30 | 27.00 | 26.64 | ||
6.77 | 6.73 | 6.68 | 6.64 | ||
0.1484 | 0.1483 | 0.1483 | 0.1484 | ||
1.75 | 1.74 | 1.73 | 1.72 | ||
1.00 | 0.98 | 0.97 | 0.95 | ||
0.2612 | 0.2596 | 0.2581 | 0.2566 | ||
0.1493 | 0.1493 | 0.1494 | 0.1494 | ||
8.0 | 43.23 | 42.96 | 42.69 | 42.43 | |
26.29 | 26.05 | 25.75 | 25.47 | ||
6.42 | 6.37 | 6.33 | 6.29 | ||
0.1485 | 0.1483 | 0.1482 | 0.1482 | ||
1.77 | 1.76 | 1.75 | 1.74 | ||
1.02 | 1.01 | 0.99 | 0.98 | ||
0.2644 | 0.2626 | 0.2610 | 0.2594 | ||
0.1492 | 0.1491 | 0.1491 | 0.1492 | ||
9.0 | 41.27 | 41.01 | 40.75 | 40.50 | |
25.18 | 24.95 | 24.71 | 24.47 | ||
6.14 | 6.09 | 6.04 | 6.00 | ||
0.1487 | 0.1485 | 0.1483 | 0.1481 | ||
1.79 | 1.78 | 1.77 | 1.76 | ||
1.03 | 1.03 | 1.02 | 1.00 | ||
0.2683 | 0.2659 | 0.2640 | 0.2623 | ||
0.1495 | 0.1491 | 0.1490 | 0.1490 | ||
10.0 | 39.63 | 39.38 | 39.13 | 38.89 | |
24.21 | 24.02 | 23.83 | 23.61 | ||
5.91 | 5.86 | 5.81 | 5.76 | ||
0.1491 | 0.1487 | 0.1484 | 0.1482 | ||
1.82 | 1.80 | 1.79 | 1.78 | ||
1.05 | 1.04 | 1.04 | 1.03 | ||
0.2723 | 0.2698 | 0.2674 | 0.2654 | ||
0.1499 | 0.1495 | 0.1491 | 0.1489 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Cao, H.; Guan, J.; He, S.; Niu, L.; Liu, H. A Three-Parameter Weibull Distribution Method to Determine the Fracture Property of PMMA Bone Cement. Polymers 2022, 14, 3589. https://doi.org/10.3390/polym14173589
Li L, Cao H, Guan J, He S, Niu L, Liu H. A Three-Parameter Weibull Distribution Method to Determine the Fracture Property of PMMA Bone Cement. Polymers. 2022; 14(17):3589. https://doi.org/10.3390/polym14173589
Chicago/Turabian StyleLi, Lielie, Hekai Cao, Junfeng Guan, Shuanghua He, Lihua Niu, and Huaizhong Liu. 2022. "A Three-Parameter Weibull Distribution Method to Determine the Fracture Property of PMMA Bone Cement" Polymers 14, no. 17: 3589. https://doi.org/10.3390/polym14173589
APA StyleLi, L., Cao, H., Guan, J., He, S., Niu, L., & Liu, H. (2022). A Three-Parameter Weibull Distribution Method to Determine the Fracture Property of PMMA Bone Cement. Polymers, 14(17), 3589. https://doi.org/10.3390/polym14173589