A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Materials Synthesis and Characterization
2.2. Optical and Electrochemical Properties
2.3. Theoretical Calculations
2.4. Photovoltaic Properties
2.5. Polymer Film Morphology
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Guo, X.; Zhou, N.; Lou, S.J.; Smith, J.; Tice, D.B.; Hennek, J.W.; Ortiz, R.P.; Navarrete, J.T.L.; Li, S.; Strzalka, J.; et al. Polymer solar cells with enhanced fill factors. Nat. Photon. 2013, 7, 825–833. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef]
- Shi, Y.; Li, W.; Wang, X.; Tu, L.; Li, M.; Zhao, Y.; Wang, Y.; Liu, Y. Isomeric Acceptor–Acceptor Polymers: Enabling Electron Transport with Strikingly Different Semiconducting Properties in n-Channel Organic Thin-Film Transistors. Chem. Mater. 2022, 34, 1403–1413. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, R.; Wang, X.; Liu, T.; Li, Y.; Fu, S.; Yang, K.; Wang, Y.; Yu, C.; Jiao, L.; et al. Influence of Fluorine Substitution on the Photovoltaic Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 5740–5749. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, H.; Huang, J.; Zhang, X.; Wu, Z.; Yang, K.; Zhang, Y.; Feng, K.; Woo, H.Y.; Ortiz, R.P.; et al. Distannylated Bithiophene Imide: Enabling High-Performance n-Type Polymer Semiconductors with an Acceptor-Acceptor Backbone. Angew. Chem. Int. Ed. Engl. 2020, 59, 14449–14457. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, H.; Bi, X.; Xu, X.; Wang, H.; Lin, M.; Ma, Z.; Zhang, M.; Li, C.; Wan, X.; et al. Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic solar cells. Energy Environ. Sci. 2022, 15, 3519–3533. [Google Scholar] [CrossRef]
- Wu, J.; Fan, Q.; Xiong, M.; Wang, Q.; Chen, K.; Liu, H.; Gao, M.; Ye, L.; Guo, X.; Fang, J.; et al. Carboxylate substituted pyrazine: A simple and low-cost building block for novel wide bandgap polymer donor enables 15.3% efficiency in organic solar cells. Nano Energy 2020, 82, 105679. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Q.; Liu, S.; Cao, Z.; Jiao, X.; Cai, Y.-P.; Huang, F. Bithieno[3,4-c]pyrrole-4,6-dione-Mediated Crystallinity in Large-Bandgap Polymer Donors Directs Charge Transportation and Recombination in Efficient Nonfullerene Polymer Solar Cells. ACS Energy Lett. 2020, 5, 367–375. [Google Scholar] [CrossRef]
- Shen, Q.; He, C.; Li, S.; Zuo, L.; Shi, M.; Chen, H. Design of Non-fused Ring Acceptors toward High-Performance, Stable, and Low-Cost Organic Photovoltaics. Acc. Mater. Res. 2022, 3, 644–657. [Google Scholar] [CrossRef]
- Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z.-G.; Li, Y. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 2018, 9, 743. [Google Scholar] [CrossRef]
- Zhang, G.; Ning, H.; Chen, H.; Jiang, Q.; Jiang, J.; Han, P.; Dang, L.; Xu, M.; Shao, M.; He, F.; et al. Naphthalenothiophene imide-based polymer exhibiting over 17% efficiency. Joule 2021, 5, 931–944. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, Y.; Yao, H.; Zhang, T.; Zhang, J.; Ma, L.; Wang, J.; Wei, Z.; Hou, J. A New Conjugated Polymer that Enables the Integration of Photovoltaic and Light-Emitting Functions in One Device. Adv. Mater. 2021, 33, 2101090. [Google Scholar] [CrossRef]
- Zhu, C.; Meng, L.; Zhang, J.; Qin, S.; Lai, W.; Qiu, B.; Yuan, J.; Wan, Y.; Huang, W.; Li, Y. A Quinoxaline-Based D-A Copolymer Donor Achieving 17.62% Efficiency of Organic Solar Cells. Adv. Mater. 2021, 33, e2100474. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Ling, S.; Arrechea-Marcos, I.; Wang, Y.; Navarrete, J.T.L.; Ortiz, R.P.; Guo, X. Ladder-type Heteroarenes: Up to 15 Rings with Five Imide Groups. Angew. Chem. Int. Ed. Engl. 2017, 56, 9924–9929. [Google Scholar] [CrossRef]
- Luo, Z.; Ma, R.; Yu, J.; Liu, H.; Liu, T.; Ni, F.; Hu, J.; Zou, Y.; Zeng, A.; Su, C.-J.; et al. Heteroheptacene-based acceptors with thieno[3,2-b]pyrrole yield high-performance polymer solar cells. Natl. Sci. Rev. 2022, 9, nwac076. [Google Scholar] [CrossRef]
- Li, T.; Wu, Y.; Zhou, J.; Li, M.; Wu, J.; Hu, Q.; Jia, B.; Pan, X.; Zhang, M.; Tang, Z.; et al. Butterfly Effects Arising from Starting Materials in Fused-Ring Electron Acceptors. J. Am. Chem. Soc. 2020, 142, 20124–20133. [Google Scholar] [CrossRef]
- Shi, Y.; Tang, Y.; Yang, K.; Qin, M.; Wang, Y.; Sun, H.; Su, M.; Lu, X.; Zhou, M.; Guo, X. Thiazolothienyl imide-based wide bandgap copolymers for efficient polymer solar cells. J. Mater. Chem. C 2019, 7, 11142–11151. [Google Scholar] [CrossRef]
- An, N.; Cai, Y.; Wu, H.; Tang, A.; Zhang, K.; Hao, X.; Ma, Z.; Guo, Q.; Ryu, H.S.; Woo, H.Y.; et al. Solution-Processed Organic Solar Cells with High Open-Circuit Voltage of 1.3 V and Low Non-Radiative Voltage Loss of 0.16 V. Adv. Mater. 2020, 32, e2002122. [Google Scholar] [CrossRef]
- An, Q.; Wang, J.; Ma, X.; Gao, J.; Hu, Z.; Liu, B.; Sun, H.; Guo, X.; Zhang, X.; Zhang, F. Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency. Energy Environ. Sci. 2020, 13, 5039–5047. [Google Scholar] [CrossRef]
- Guo, X.; Fan, Q.; Wu, J.; Li, G.; Peng, Z.; Su, W.; Lin, J.; Hou, L.; Qin, Y.; Ade, H.; et al. Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6% Efficiency Organic Solar Cells with Enhanced Fill Factor. Angew. Chem. Int. Ed. Engl. 2021, 60, 2322–2329. [Google Scholar] [CrossRef]
- Ha, J.-W.; Kim, H.S.; Song, C.E.; Park, H.J.; Hwang, D.-H. Thienoquinolinone as a new building block for wide bandgap semiconducting polymer donors for organic solar cells. J. Mater. Chem. C 2020, 8, 12265–12271. [Google Scholar] [CrossRef]
- Luo, Y.; Luo, Y.; Huang, X.; Liu, S.; Cao, Z.; Guo, L.; Li, Q.; Cai, Y.; Wang, Y. A New Ester-Substituted Quinoxaline-Based Narrow Bandgap Polymer Donor for Organic Solar Cells. Macromol. Rapid Commun. 2021, 42, e2000683. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, Y.; Liao, X.; Cui, Y.; Huang, S.; Hu, L.; He, Q.; Chen, L.; Chen, Y. Isomeric Effect of Wide Bandgap Polymer Donors with High Crystallinity to Achieve Efficient Polymer Solar Cells. Macromol. Rapid Commun. 2020, 41, 2000454. [Google Scholar] [CrossRef]
- Khadka, D.B.; Shirai, Y.; Yanagida, M.; Noda, T.; Miyano, K. Tailoring the Open-Circuit Voltage Deficit of Wide-Band-Gap Perovskite Solar Cells Using Alkyl Chain-Substituted Fullerene Derivatives. ACS Appl. Mater. Interfaces 2018, 10, 22074–22082. [Google Scholar] [CrossRef]
- Nakanishi, R.; Nogimura, A.; Eguchi, R.; Kanai, K. Electronic structure of fullerene derivatives in organic photovoltaics. Org. Electron. 2014, 15, 2912–2921. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Lau, T.; Zhan, L.; Shen, D.; Fong, P.W.K.; Yan, C.; Zhang, S.; Lu, X.; Lee, C.-S.; et al. A Novel Wide-Bandgap Polymer with Deep Ionization Potential Enables Exceeding 16% Efficiency in Ternary Nonfullerene Polymer Solar Cells. Adv. Funct. Mater. 2020, 30, 1910466. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, G.; Ye, F.; Zhao, X.; Yang, X. Efficient Non-Fullerene Organic Photovoltaic Modules Incorporating As-Cast and Thickness-Insensitive Photoactive Layers. Adv. Energy Mater. 2018, 8, 1801387. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.; Xu, J.; Han, M.; Su, D.; Wu, N.; Zhang, C.; Xu, A.; Zhan, C. Phthalimide Polymer Donor Guests Enable over 17% Efficient Organic Solar Cells via Parallel-Like Ternary and Quaternary Strategies. Adv. Energy Mater. 2020, 10, 2001436. [Google Scholar] [CrossRef]
- Keshtov, M.L.; Khokhlov, A.R.; Godovsky, D.Y.; Ostapov, I.E.; Alekseev, V.G.; Xie, Z.; Chayal, G.; Sharma, G.D. Novel Pyrrolo [3,4-b] Dithieno [3, 2-f:2″,3″-h] Quinoxaline-8,10 (9H)-Dione Based Wide Bandgap Conjugated Copolymers for Bulk Heterojunction Polymer Solar Cells. Macromol. Rapid Commun. 2022, 43, e2200060. [Google Scholar] [CrossRef] [PubMed]
- Busireddy, M.R.; Chen, T.-W.; Huang, S.-C.; Nie, H.; Su, Y.-J.; Chuang, C.-T.; Kuo, P.-J.; Chen, J.-T.; Hsu, C.-S. Fine Tuning Alkyl Substituents on Dithienoquinoxaline-Based Wide-Bandgap Polymer Donors for Organic Photovoltaics. ACS Appl. Mater. Interfaces 2022, 14, 22353–22362. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhu, C.; Meng, L.; Li, Y. Quinoxaline-Based D–A Copolymers for the Applications as Polymer Donor and Hole Transport Material in Polymer/Perovskite Solar Cells. Adv. Mater. 2022, 34, 2104161. [Google Scholar] [CrossRef] [PubMed]
- Yong-qiang, S.; Wang, Y.; Guo, X. Recent Progress of Imide-Functionalized N-Type Polymer Semiconductors. Acta. Polym. Sin. 2019, 50, 873–889. [Google Scholar]
- Shi, Y.; Guo, H.; Qin, M.; Wang, Y.; Zhao, J.; Sun, H.; Wang, H.; Wang, Y.; Zhou, X.; Facchetti, A.; et al. Imide-Functionalized Thiazole-Based Polymer Semiconductors: Synthesis, Structure–Property Correlations, Charge Carrier Polarity, and Thin-Film Transistor Performance. Chem. Mater. 2018, 30, 7988–8001. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, H.; Qin, M.; Zhao, J.; Wang, Y.; Wang, H.; Wang, Y.; Facchetti, A.; Lu, X.; Guo, X. Thiazole Imide-Based All-Acceptor Homopolymer: Achieving High-Performance Unipolar Electron Transport in Organic Thin-Film Transistors. Adv. Mater. 2018, 30, 1705745. [Google Scholar] [CrossRef]
Polymer | Mn (kDa) a | PDI a | λonsetfilm (nm) b | Egopt (eV) c | HOMO (eV) d | LUMO (eV) e |
---|---|---|---|---|---|---|
P(BPQI-BDT) | 24 | 2.2 | 584 | 2.12 | −5.41 | −3.29 |
P(BPQI-BDTT) | 37 | 2.0 | 588 | 2.10 | −5.51 | −3.41 |
Active Layer | VOC (V) | JSC (mA cm−2) | Jcal (mA cm−2) | FF (%) | PCEmax/PCEave a (%) |
---|---|---|---|---|---|
P(BPQI-BDT):Y6 | 0.68 | 6.23 | 6.71 | 34.61 | 1.48/1.35 ± 0.10 |
P(BPQI-BDTT):Y6 | 0.82 | 17.09 | 17.00 | 44.78 | 6.31/5.97 ± 0.29 |
Active Layer | VOC (V) | JSC (mA cm−2) | FF (%) | PCE (%) |
---|---|---|---|---|
P(BPQI-BDTT):Y6 | 0.80 | 13.92 | 44.77 | 5.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, Z.; Li, M.; Tu, L.; Wang, K.; Xiao, D.; Guo, Q.; Zhou, M.; Wei, X.; Shi, Y.; et al. A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells. Polymers 2022, 14, 3590. https://doi.org/10.3390/polym14173590
Wang X, Wang Z, Li M, Tu L, Wang K, Xiao D, Guo Q, Zhou M, Wei X, Shi Y, et al. A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells. Polymers. 2022; 14(17):3590. https://doi.org/10.3390/polym14173590
Chicago/Turabian StyleWang, Xin, Zongtao Wang, Mingwei Li, Lijun Tu, Ke Wang, Dengping Xiao, Qiang Guo, Ming Zhou, Xianwen Wei, Yongqiang Shi, and et al. 2022. "A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells" Polymers 14, no. 17: 3590. https://doi.org/10.3390/polym14173590
APA StyleWang, X., Wang, Z., Li, M., Tu, L., Wang, K., Xiao, D., Guo, Q., Zhou, M., Wei, X., Shi, Y., & Zhou, E. (2022). A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells. Polymers, 14(17), 3590. https://doi.org/10.3390/polym14173590