Crystallinity of Amphiphilic PE-b-PEG Copolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
DSC and Optical Microscopy Analysis
3. Results
3.1. PEG Homopolymer
3.1.1. Thermal Analysis
3.1.2. Morphology and Growth Rate of PEG Homopolymer Crystalline Structures
3.2. PE Homopolymer
3.2.1. Thermal Analysis
3.2.2. Morphology and Growth Rate of PE Crystalline Structures
3.3. Crystallinity of PE-b-PEG Copolymers
3.3.1. Thermal Analysis
3.3.2. Morphological Analysis and Crystalline Growth Rate Determination
PE-b-PEG C (83 wt. % PEG) Copolymer
PE-b-PEG A (23 wt. % PEG) Copolymer
PE-b-PEG B (55 wt. % PEG) Copolymer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Carrasco-Hernandez, S.; Gutierrez, J.; Tercjak, A. PE-b-PEO block copolymer nanostructured thermosetting systems as template for TiO2 nanoparticles. Eur. Polym. J. 2017, 94, 87–98. [Google Scholar] [CrossRef]
- Holmberg, K. Applications of Block Copolymers Amphiphilic Block Copolymers—Self-Assembly and Applications; Elsevier: Amsterdam, The Netherlands, 2000; pp. 305–318. [Google Scholar]
- Thitisomboon, W.; Gu, Q.; Weng, L.T.; Gao, P. Surface confinement induced amorphization of polyethylene oxide in high-performance porous polyethylene films. Polymer 2021, 217, 123449. [Google Scholar] [CrossRef]
- Pons, R. Polymeric surfactants as emulsions stabilizers. In Amphiphilic Block Copolymers—Self-Assembly and Applications; Elsevier: Amsterdam, The Netherlands, 2000; pp. 409–421. [Google Scholar]
- Malmsten, M. Block copolymers in pharmaceutics. In Amphiphilic Block Copolymers—Self-Assembly and Applications; Elsevier: Amsterdam, The Netherlands, 2000; pp. 319–346. [Google Scholar]
- De Rosa, C.; Di Girolamo, R.; Malafronte, A.; Scoti, M.; Talarico, G.; Auriemma, F.; de Ballesteros, O.R. Polyolefins based crystalline block copolymers: Ordered nanostructures from control of crystallization. Polymer 2020, 196, 122423. [Google Scholar] [CrossRef]
- Matxinandiarena, E.; Múgica, A.; Tercjak, A.; Ladelta, V.; Zapsas, G.; Hadjichristidis, N.; Cavallo, D.; Flores, A.; Muller, A.J. Sequential Crystallization and Multicrystalline Morphology in PE-b-PEO-b-PCL-b-PLLA Tetrablock Quarterpolymers. Macromolecules 2021, 54, 7244–7257. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.-Y.; Nandan, B.; Chen, M.-C.; Chiu, F.-C.; Chen, H.-L. Correlation between crystallization kinetics and melt phase behaviour of crystalline-amorphous block copolymer/homopolymer blends. Polymer 2005, 46, 11837–11843. [Google Scholar] [CrossRef]
- Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J.-S. Crystallization kinetics in microphase-separated poly(ethylene oxide)-b-poly(1,4 butadiene). Macromolecules 2001, 34, 6936–6944. [Google Scholar] [CrossRef]
- Zhu, L.; Mimnaugh, B.; Ge, Q.; Quirk, R.; Cheng, S. Hard and soft confinments effects on polymer crystallization in microphase separated cylinder-forming PEO-b-PS/PS blends. Polymer 2001, 42, 9121–9913. [Google Scholar] [CrossRef]
- Ho, R.-M.; Chung, T.-M.; Tsai, J.-C.; Kuo, J.-C.; Hsiao, B.-S.; Sics, I. Crystallization of polystyrene-block-[syndiotactic poly(propylene)] block copolymers from confinement to breakout. Macromol. Rapid Commun. 2005, 26, 107–111. [Google Scholar] [CrossRef]
- Lü, Y.; Ma, Z.; Hu, Y.; Xu, G.-X.; Chung, T.-C. New synthesis of PE-g-PEO via esterification. Chin. Sci. Bull. 2013, 48, 6523–6525. [Google Scholar]
- Sun, L.; Liu, Y.; Zhu, L.; Hsiao, B.; Avila-Orta, C. Pathway-Dependent Melting in a Low-Molecular-Weight Polyethylene-block-Poly(ethylene oxide) Diblock Copolymer. Macromol. Rapid Commun. 2003, 25, 853–857. [Google Scholar] [CrossRef]
- Pielichowski, K.; Flejtuch, K. Differential Scanning Calorimetry Studies on Poly(ethylene Glycol) with Different Molecular Weights for Thermal Energy Storage Material. Polym. Adv. Technol. 2002, 13, 690–696. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Y.-S.; Topolkaraev, V.; Hiltner, A.; Baer, E. Crystallization and phase separation in blends of high stereoregular poly(actide) with poly(ethylene glycol). Polymer 2003, 44, 5681–5689. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Q.; Huang, C.; Liu, G. Crystallization of Poly(ethylene glycol) in Poly(methyl methacrylate) Networks. Mater. Sci. 2012, 19, 147–151. [Google Scholar] [CrossRef]
- Ginès, J.-M.; Arias, M.-J.; Rabasco, A.-M.; Novàk, C.; Ruiz-Condè, A.; Sanchez-Santo, P.-J. Thermal Characterization of Polyethylene glycol applied in the pharmaceutical technology using Differential Scanning Calorimetry and Hot Stage Microscopy. J. Therm. Anal. 1996, 46, 291–304. [Google Scholar] [CrossRef]
- Li, X.; Hsu, S.-L. An analysis of the crystallization behavior of poly(ethylene oxide)/poly(methyl methacrylate) blends by spectroscopic and calorimetric technique. J. Polym. Sci. Polym. Phys. Ed. 1984, 22, 1331–1342. [Google Scholar] [CrossRef]
- Guo, Q. Phase behavior and crystallization in blends of a low molecular weight polyethylene-block-poly(ethylene oxide) diblock copolymer and poly(hydroxyether of bisphenol A). Thermochim. Acta 2006, 451, 168–173. [Google Scholar] [CrossRef]
- Pereira, A.; Gouveia, R.; de Carvalho, G.-M.; Rubira, A.; Muniz, E. Polymer blends based on PEO and starch: Miscibility and spherulite growth rate evaluated through DSC and optical microscopy. Mater. Sci. Eng. 2008, 29, 499–504. [Google Scholar] [CrossRef]
- Cochez, A.-C.; Canto, R.B.; Schmitt, N.; Billardon, R. Identification des cinétiques de cristallisation primaire et secondaire du Polytétrafluoroéthylène (PTFE). In Proceedings of the 19ème Congrès Français de Mécanique, Courbevoie, France, 24 August 2009; pp. 1–6. [Google Scholar]
- Wunderlich, B.; Cormier, C.-M. Heat of fusion of Polyethylene. J. Polym. Sci. Part A-2 1967, 5, 987–988. [Google Scholar] [CrossRef]
- Peacock, A.-J. Handbook of Polyethylene, Structures, Properties, and Applications; Dekker: New York, NY, USA, 2000; pp. 177–178. [Google Scholar]
- Mandelkern, L.; Allou, A.-L.; Gopalan, M. The enthalpy of fusion of linear polyethylene. J. Phys. Chem. 1968, 72, 305–318. [Google Scholar] [CrossRef]
- Tavichai, O.; Feng, L.; Kamal, M.-R. Crystalline Spherulitic Growth Kinetics During Shear for Linear Low-Density Polyethylene. Polym. Eng. Sci. 2006, 46, 1468–1475. [Google Scholar] [CrossRef]
- Hoffman, J.; Frolen, L.; Ross, G.; Gaylon, S.; Lauritzen, J. On the growth rate of spherulites and axialites from the melt in polyethylene fractions: Regime I and regime II crystallization. J. Res. Natl. Inst. Stand. Technol. 1975, 79, 678–679. [Google Scholar] [CrossRef] [PubMed]
- Billmeyer, F.; Ceil, P.-H.; van der Weg, K.-R. Growth and observation of spherulites in polyethylene: A high polymer demonstration. J. Chem. Educ. 1960, 37, 460. [Google Scholar] [CrossRef]
- Patki, R.-P.; Phillips, P.-J. Crystallization kinetics of linear polyethylene:the maximum in crystal growth rate-temperature dependence. Eur. Polym. J. 2008, 44, 534–541. [Google Scholar] [CrossRef]
- Abo el Maaty, M.-I.; Bassett, D.-C. Evidence for isothermal lamellar thickening at and behind the growth front as polyethylene crystallizes from the melt. Polymer 2005, 46, 8682–8688. [Google Scholar] [CrossRef]
- Mendez-Hernandez, M.; Tena-Salcido, C.; Sandoval- Arellano, Z.; Gonzalez-Cantu, M.; Mondragon, M.; Rodriguez-Gonzalez, F. The effect of thermoplastic starch on the properties of HDPE/TPS blends during UV-accelerated aging. Polym. Bull. 2011, 67, 903–914. [Google Scholar] [CrossRef]
- Richards, R.-B. Polyethylene structure, crystallinity and properties. J. Appl. Chem. 1951, 1, 370–376. [Google Scholar] [CrossRef]
- Burch, G.N.B.; Feild, G.B.; McTigue, F.H.; Spurlin, H.M. Property-structure relationships in Polyethylene. SPE J. 1957, 13, 34. [Google Scholar]
Chemical Composition Determined by 1H NMR | ||||||
---|---|---|---|---|---|---|
Polymer | Mn PE [g·mol−1] | Mn PEG [g·mol−1] | PE Block [wt. %] | PEG Block [wt. %] | PE Block [molar %] | PEG Block [molar %] |
PEG | - | 2041 | - | 100 | - | 100 |
PE | 1630 | - | 100 | - | 100 | - |
PE-b-PEG A | 334 | 101 | 77 | 23 | 84 | 16 |
PE-b-PEG B | 326 | 385 | 45 | 55 | 57 | 43 |
PE-b-PEG C | 311 | 1474 | 17 | 83 | 25 | 75 |
DSC | Optical Microscopy | ||
---|---|---|---|
PEG crystallization temperatures (°C) | Tc initial | 39 | 40 |
Tc final | 24 | 35 | |
PEG melting temperatures (°C) | Tm initial | 43 | 49 |
Tm final | 59 | 60 |
DSC | Optical Microscopy | ||
---|---|---|---|
PE crystallization Temperatures (°C) | Tc initial | 101 | 108 |
Tc final | 19 | 50 | |
PE melting temperatures (°C) | Tm initial | 29 | 30 |
Tm final | 111 | 110 |
PE-b-PEG C (83 wt. % PEG) | DSC | Optical Microscopy | |
---|---|---|---|
PE crystallization Temperatures (°C) | Tc initial | - | 94 |
Tc final | - | 50 | |
PE melting temperatures (°C) | Tm initial | - | 76 |
Tm final | - | 90 | |
PEG crystallization temperatures (°C) | Tc initial | 37 | 33 |
Tc final | 24 | 31 | |
PEG melting Temperatures (°C) | Tm initial | 35 | 52 |
Tm final | 58 | 58 |
PE-b-PEG A (23 wt. % PEG) | DSC | Optical Microscopy | |
---|---|---|---|
PE crystallization Temperatures (°C) | Tc initial | 90 | 95 |
Tc final | <10 | 70 | |
PE melting Temperatures (°C) | Tm initial | 17 | 85 |
Tm final | 96 | 98 | |
PEG crystallization Temperatures (°C) | Tc initial | - | - |
Tc final | - | - | |
PEG melting Temperatures (°C) | Tm initial | - | - |
Tm final | - | - |
PE-b-PEG B (55 wt. % PEG) | DSC | Optical Microscopy | |
---|---|---|---|
PE crystallization Temperatures (°C) | Tc initial | 87 | 94 |
Tc final | 5 | 79 | |
PE melting Temperatures (°C) | Tm initial | 47 | 60 |
Tm final | 98 | 95 | |
PEG crystallization Temperatures (°C) | Tc initial | 3 | - |
Tc final | −12 | - | |
PEG melting temperatures (°C) | Tm initial | 28 | 26 |
Tm final | 45 | 55 |
PEG Crystalline Structures | PE Crystalline Structures | |||||||
---|---|---|---|---|---|---|---|---|
Polymer | Mn PEG Block (g·mol−1) | PE Block (wt. %) | Size (µm) | Growth Rate (µm/s) | Crystallinity Degree (%) | Size (µm) | Growth Rate (µm/s) | Crystallinity Degree (%) |
PEG | 2041 | 0 | 200 | 17 | 95 | - | - | - |
PE-b-PEG C | 1474 | 17 | 200 | 4 | 82 | 11 | 0.03 | 0 |
PE-b-PEG B | 385 | 45 | - | - | 16 | 10 | 0.02 | 27 |
PE-b-PEG A | 101 | 77 | - | - | 0 | 16 | 0.04 | 94 |
PE | 0 | 100 | - | - | - | 40 | 0.2 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bistac, S.; Brogly, M.; Bindel, D. Crystallinity of Amphiphilic PE-b-PEG Copolymers. Polymers 2022, 14, 3639. https://doi.org/10.3390/polym14173639
Bistac S, Brogly M, Bindel D. Crystallinity of Amphiphilic PE-b-PEG Copolymers. Polymers. 2022; 14(17):3639. https://doi.org/10.3390/polym14173639
Chicago/Turabian StyleBistac, Sophie, Maurice Brogly, and Diane Bindel. 2022. "Crystallinity of Amphiphilic PE-b-PEG Copolymers" Polymers 14, no. 17: 3639. https://doi.org/10.3390/polym14173639
APA StyleBistac, S., Brogly, M., & Bindel, D. (2022). Crystallinity of Amphiphilic PE-b-PEG Copolymers. Polymers, 14(17), 3639. https://doi.org/10.3390/polym14173639