Synthesis of Jatropha-Oil-Based Polyester Polyol as Sustainable Biobased Material for Waterborne Polyurethane Dispersion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Jatropha-Oil-Based Polyester Polyol
2.2.1. Epoxidation
2.2.2. Oxirane Ring-Opening
2.3. Synthesis of Waterborne Jatropha-Oil-Based Polyurethane (JPU) Dispersions
2.4. Characterizations
2.4.1. Spectral Analysis
2.4.2. OH Number Determination
2.4.3. Rheology
2.4.4. Thermogravimetric Analysis (TGA)
2.4.5. Differential Scanning Calorimetry
2.4.6. Particle Size and Zeta Potential
3. Results and Discussion
3.1. FTIR Analysis of JOL
3.2. Physicochemical and Rheological Properties of JOL
3.3. Thermogravimetric Analysis
3.4. Differential Scanning Calorimetry
3.5. FTIR Analysis of Jatropha-Oil-Based Polyurethane Prepolymer (JPU)
3.6. Colloidal Stability of JPU Dispersions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaik, A.; Baidya, K.; Nehete, K.; Shyamroy, S. Synthesis and Characterization of Castor Oil-Based Branched Polyols from Renewable Resources and Their Polyurethane-Urea Coatings. J. Coat. Technol. Res. 2019, 16, 387–400. [Google Scholar] [CrossRef]
- Lubguban, A.A.; Ruda, R.J.G.; Aquiatan, R.H.; Paclijan, S.; Magadan, K.O.; Balangao, J.K.B.; Escalera, S.T.; Bayron, R.R.; Debalucos, B.; Lubguban, A.A.; et al. Soy-Based Polyols and Polyurethanes. Kimika 2017, 28, 1–19. [Google Scholar] [CrossRef]
- Saalah, S.; Abdullah, L.C.; Aung, M.M.; Salleh, M.Z.; Biak, D.R.A.; Basri, M.; Jusoh, E.R.; Mamat, S. Physicochemical Properties of Jatropha Oil-Based Polyol Produced by a Two Steps Method. Molecules 2017, 22, 551. [Google Scholar] [CrossRef] [PubMed]
- Saalah, S.; Abdullah, L.C.; Aung, M.M.; Salleh, M.Z.; Awang Biak, D.R.; Basri, M.; Jusoh, E.R. Waterborne Polyurethane Dispersions Synthesized from Jatropha Oil. Ind. Crops Prod. 2015, 64, 194–200. [Google Scholar] [CrossRef]
- Aung, M.M.; Yaakob, Z.; Kamarudin, S.; Abdullah, L.C. Synthesis and Characterization of Jatropha (Jatropha curcas L.) Oil-Based Polyurethane Wood Adhesive. Ind. Crops Prod. 2014, 60, 177–185. [Google Scholar] [CrossRef]
- Saalah, S.; Abdullah, L.C.; Aung, M.M.; Salleh, M.Z.; Biak, D.R.A.; Basri, M.; Jusoh, E.R.; Mamat, S.; Al Edrus, S.S.O. Chemical and Thermo-Mechanical Properties of Waterborne Polyurethane Dispersion Derived from Jatropha Oil. Polymers 2021, 13, 795. [Google Scholar] [CrossRef]
- Harun, N.H.; Abidin, Z.Z.; Abdullah, A.H. Sustainable Jatropha Oil-Based Membrane with Graphene Oxide for Potential Application in Cu (II) Ion Removal from Aqueous Solution. Processes 2020, 8, 230. [Google Scholar] [CrossRef]
- Saravari, O.; Praditvatanakit, S. Preparation and Properties of Urethane Alkyd Based on a Castor Oil/Jatropha Oil Mixture. Prog. Org. Coat. 2013, 76, 698–704. [Google Scholar] [CrossRef]
- Boruah, M.; Gogoi, P.; Adhikari, B.; Dolui, S.K. Preparation and Characterization of Jatropha curcas Oil Based Alkyd Resin Suitable for Surface Coating. Prog. Org. Coat. 2012, 74, 596–602. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S. An Evaluation of Multipurpose Oil Seed Crop for Industrial Uses (Jatropha curcas L.): A Review. Ind. Crops Prod. 2008, 28, 1–10. [Google Scholar] [CrossRef]
- Hazmi, A.S.A.; Aung, M.M.; Abdullah, L.C.; Salleh, M.Z.; Mahmood, M.H. Producing Jatropha Oil-Based Polyol via Epoxidation and Ring Opening. Ind. Crops Prod. 2013, 50, 563–567. [Google Scholar] [CrossRef]
- Sukhawipat, N.; Saetung, N.; Pasetto, P.; Pilard, J.; Bistac, S.; Saetung, A. Progress in Organic Coatings A Novel High Adhesion Cationic Waterborne Polyurethane for Green Coating Applications. Prog. Org. Coat. 2020, 148, 105854. [Google Scholar] [CrossRef]
- Madbouly, S.A. Waterborne Polyurethane Dispersions and Thin Films: Biodegradation and antimicrobial behaviors. Molecules 2021, 26, 961. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, F.; Zuber, M.; Zia, K.M.; Jamil, T.; Hussain, R. Synthesis and Properties of Aqueous Polyurethane Dispersions: Influence of Molecular Weight of Polyethylene Glycol. Korean J. Chem. Eng. 2013, 30, 2259–2263. [Google Scholar] [CrossRef]
- Sawpan, M.A. Polyurethanes from Vegetable Oils and Applications: A Review. J. Polym. Res. 2018, 25, 184. [Google Scholar] [CrossRef]
- Borowicz, M.; Paciorek-Sadowska, J.; Isbrandt, M. Synthesis and Application of New Bio-Polyols Based on Mustard Oil for the Production of Selected Polyurethane Materials. Ind. Crops Prod. 2020, 155, 112831. [Google Scholar] [CrossRef]
- Kosmela, P.; Gosz, K.; Kazimierski, P.; Hejna, A.; Haponiuk, J.T.; Piszczyk, Ł. Chemical Structures, Rheological and Physical Properties of Biopolyols Prepared via Solvothermal Liquefaction of Enteromorpha and Zostera Marina Biomass. Cellulose 2019, 26, 5893–5912. [Google Scholar] [CrossRef]
- Tuan Ismail, T.N.M.; Ibrahim, N.A.; Mohd Noor, M.A.; Hoong, S.S.; Poo Palam, K.D.; Yeong, S.K.; Idris, Z.; Schiffman, C.M.; Sendijarevic, I.; Abd Malek, E.; et al. Oligomeric Composition of Polyols from Fatty Acid Methyl Ester: The Effect of Ring-Opening Reactants of Epoxide Groups. J. Am. Oil Chem. Soc. 2018, 95, 509–523. [Google Scholar] [CrossRef]
- Pereira, R.; da Silva, L.R.; Carvalho, B.A.; Mattos, A.L.; Mazzetto, S.E.; Lomonaco, D. Development of Bio—Based Polyurethane Wood Adhesives from Agroindustrial Waste. J. Polym. Environ. 2021, 30, 1959–1972. [Google Scholar] [CrossRef]
- Kamairudin, N.; Hoong, S.S.; Abdullah, L.C.; Ariffin, H.; Biak, D.R.A. Optimisation of Epoxide Ring-Opening Reaction for the Synthesis of Bio-Polyol from Palm Oil Derivative Using Response Surface Methodology. Molecules 2021, 26, 648. [Google Scholar] [CrossRef]
- Noor, N.M.; Noor, T.; Tuan, M.; Azmil, M.; Noor, M.; Devi, K.; Palam, P.O.O.; Sattar, M.N.; Adnan, S.; Kian, Y.S. Physicochemical Properties of Palm Olein-Based Polyols Prepared Using Homogeneous and Heterogeneous Catalysts. J. Oil Palm Res. 2022, 34, 167–176. [Google Scholar]
- Sharma, B.K.; Adhvaryu, A.; Liu, Z.; Erhan, S.Z. Chemical Modification of Vegetable Oils for Lubricant Applications. JAOCS J. Am. Oil Chem. Soc. 2006, 83, 129–136. [Google Scholar] [CrossRef]
- Saalah, S.; Abdullah, L.C.; Aung, M.M.; Salleh, M.Z.; Awang Biak, D.R.; Basri, M.; Jusoh, E.R.; Mamat, S. Colloidal Stability and Rheology of Jatropha Oil-Based Waterborne Polyurethane (JPU) Dispersion. Prog. Org. Coat. 2018, 125, 348–357. [Google Scholar] [CrossRef]
- Favero, D.; Marcon, V.R.R.; Barcellos, T.; Gómez, C.M.; Sanchis, M.J.; Carsí, M.; Figueroa, C.A.; Bianchi, O. Renewable Polyol Obtained by Microwave-Assisted Alcoholysis of Epoxidized Soybean Oil: Preparation, Thermal Properties and Relaxation Process. J. Mol. Liq. 2019, 285, 136–145. [Google Scholar] [CrossRef]
- Członka, S.; Bertino, M.F.; Kośny, J.; Strąkowska, A.; Masłowski, M.; Strzelec, K. Linseed Oil as a Natural Modifier of Rigid Polyurethane Foams. Ind. Crops Prod. 2018, 115, 40–51. [Google Scholar] [CrossRef]
- Lu, Y.; Larock, R.C. Soybean-Oil-Based Waterborne Polyurethane Dispersions: Effects of Polyol Functionality and Hard Segment Content on Properties. Biomacromolecules 2008, 9, 3332–3340. [Google Scholar] [CrossRef]
- Mudri, N.H.; Abdullah, L.C.; Aung, M.M.; Biak, D.R.A.; Tajau, R. Structural and Rheological Properties of Nonedible Vegetable Oil-Based Resin. Polymers 2021, 13, 2490. [Google Scholar] [CrossRef]
- Venkatesh, D.; Jaisankar, V. A Kinetic Study of Certain Vegetable Oil Based Polyurethane. Int. J. Sci. Eng. Investig. 2018, 7, 44–51. [Google Scholar]
- Zhang, J.; Tang, J.J.; Zhang, J.X. Polyols Prepared from Ring-Opening Epoxidized Soybean Oil by a Castor Oil-Based Fatty Diol. Int. J. Polym. Sci. 2015, 2015, 529235. [Google Scholar] [CrossRef]
- Parcheta, P.; Datta, J. Structure-Rheology Relationship of Fully Bio-Based Linear Polyester Polyols for Polyurethanes—Synthesis and Investigation. Polym. Test. 2018, 67, 110–121. [Google Scholar] [CrossRef]
- Prociak, A.; Malewska, E.; Kurańska, M.; Bąk, S.; Budny, P. Flexible Polyurethane Foams Synthesized with Palm Oil-Based Bio-Polyols Obtained with the Use of Different Oxirane Ring Opener. Ind. Crops Prod. 2018, 115, 69–77. [Google Scholar] [CrossRef]
- Dai, H.; Yang, L.; Lin, B.; Wang, C.; Shi, G. Synthesis and Characterization of the Different Soy-Based Polyols by Ring Opening of Epoxidized Soybean Oil with Methanol, 1,2-Ethanediol and 1,2-Propanediol. JAOCS J. Am. Oil Chem. Soc. 2009, 86, 261–267. [Google Scholar] [CrossRef]
- Caillol, S.; Desroches, M.; Boutevin, G.; Loubat, C.; Auvergne, R.; Boutevin, B. Synthesis of New Polyester Polyols from Epoxidized Vegetable Oils and Biobased Acids. Eur. J. Lipid Sci. Technol. 2012, 114, 1447–1459. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, Y.; Guo, Y.; Liu, F.; Chen, F. Determination of Phenolic Contents and Antioxidant Activities of Extracts of Jatropha curcas L. Seed Shell, a by-Product, a New Source of Natural Antioxidant. Ind. Crops Prod. 2014, 58, 265–270. [Google Scholar] [CrossRef]
- Coni, E.; Podestà, E.; Catone, T. Oxidizability of Different Vegetables Oils Evaluated by Thermogravimetric Analysis. Thermochim. Acta 2004, 418, 11–15. [Google Scholar] [CrossRef]
- Guo, A.; Cho, Y.; Petrović, Z.S. Structure and Properties of Halogenated and Nonhalogenated Soy-Based Polyols. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 3900–3910. [Google Scholar] [CrossRef]
- Guo, A.; Demydov, D.; Zhang, W.; Petrovic, Z.S. Polyols and Polyurethanes from Hydroformylation of Soybean Oil. J. Polym. Environ. 2002, 10, 49–52. [Google Scholar] [CrossRef]
- Favero, D.; Marcon, V.; Figueroa, C.A.; Gómez, C.M.; Cros, A.; Garro, N.; Sanchis, M.J.; Carsí, M.; Bianchi, O. Effect of Chain Extender on the Morphology, Thermal, Viscoelastic, and Dielectric Behavior of Soybean Polyurethane. J. Appl. Polym. Sci. 2021, 138, 50709. [Google Scholar] [CrossRef]
- Tielemans, M.; Roose, P.; De Groote, P.; Vanovervelt, J. Colloidal Stability of Surfactant-Free Radiation Curable Polyurethane Dispersions. Prog. Org. Coat. 2006, 55, 128–136. [Google Scholar] [CrossRef]
- Asif, A.; Shi, W.; Shen, X.; Nie, K. Physical and Thermal Properties of UV Curable Waterborne Polyurethane Dispersions Incorporating Hyperbranched Aliphatic Polyester of Varying Generation Number. Polymer 2005, 46, 11066–11078. [Google Scholar] [CrossRef]
- Gumustas, M.; Sengel-turk, C.T.; Gumustas, A. Effect of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780323527255. [Google Scholar]
Sample | Polyol | Molar Ratio | Percentage of DMPA (%) | a Hard Segment (wt%) | ||
---|---|---|---|---|---|---|
JOL | DMPA | IPDI | ||||
JPUM | JOLM | 1 | 0.53 | 1.53 | 6.5 | 44.14 |
JPUE | JOLE | 1 | 0.48 | 1.48 | 6.5 | 45.64 |
JPUI | JPUI | 1 | 0.45 | 1.45 | 6.5 | 47.27 |
Sample | Ring-Opening Agent | OH No. (mg/KOH) | Viscosity at 25 °C (mPa·s) (At Shear Rate of 100 s−1) |
---|---|---|---|
JO | - | - | 51 |
JOLM | Methanol | 166 ± 11 | 202 |
JOLE | Ethanol | 180 ± 5 | 666 |
JOLI | Isopropanol | 189 ± 4 | 213 |
Sample | T10%, °C | Tmax1, °C | Mass Loss 1 (wt%) | Tmax2, °C | Mass Loss 2 (wt%) | Residue at 580 °C (wt%) |
---|---|---|---|---|---|---|
JO | 289.65 | 242.36 | 9.75 | 409.20 | 89.73 | 0.50 |
JOLI | 230.00 | 247.40 | 24.69 | 410.27 | 74.89 | 0.36 |
JOLE | 220.00 | 254.27 | 33.35 | 409.18 | 65.65 | 0.38 |
JOLM | 220.00 | 232.08 | 25.61 | 408.01 | 74.46 | 0.13 |
Sample | Peak 1 (°C) | Peak 2 (°C) |
---|---|---|
JO | −16.3 | |
JOLM | −3.5 | |
JOLI | −13.1 | 0.8 |
JOLE | 5.8 |
Dispersion | Soft Segment (wt%) | Color/ Appearance | Particle Size (nm) | Zeta Potential (mV) | PDI |
---|---|---|---|---|---|
JPUM | 55.86 | Milky white, opaque | 43.83 ± 8.95 | −64.67 ± 17.94 | 0.199 |
JPUE | 54.36 | Yellowish, transparent | 12.90 ± 0.07 | −47.01 ± 12.20 | 0.200 |
JPUI | 52.73 | Dark yellow, transparent | 6.39 ± 0.04 | −88.9 ± 13.62 | 0.292 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundang, M.; Nurdin, N.S.; Saalah, S.; Singam, Y.J.; Al Edrus, S.S.O.; Ismail, N.M.; Sipaut, C.S.; Abdullah, L.C. Synthesis of Jatropha-Oil-Based Polyester Polyol as Sustainable Biobased Material for Waterborne Polyurethane Dispersion. Polymers 2022, 14, 3715. https://doi.org/10.3390/polym14183715
Sundang M, Nurdin NS, Saalah S, Singam YJ, Al Edrus SSO, Ismail NM, Sipaut CS, Abdullah LC. Synthesis of Jatropha-Oil-Based Polyester Polyol as Sustainable Biobased Material for Waterborne Polyurethane Dispersion. Polymers. 2022; 14(18):3715. https://doi.org/10.3390/polym14183715
Chicago/Turabian StyleSundang, Murni, Nur Sjanrah Nurdin, Sariah Saalah, Yamunah Jaibalah Singam, Syeed SaifulAzry Osman Al Edrus, Noor Maizura Ismail, Coswald Stephen Sipaut, and Luqman Chuah Abdullah. 2022. "Synthesis of Jatropha-Oil-Based Polyester Polyol as Sustainable Biobased Material for Waterborne Polyurethane Dispersion" Polymers 14, no. 18: 3715. https://doi.org/10.3390/polym14183715
APA StyleSundang, M., Nurdin, N. S., Saalah, S., Singam, Y. J., Al Edrus, S. S. O., Ismail, N. M., Sipaut, C. S., & Abdullah, L. C. (2022). Synthesis of Jatropha-Oil-Based Polyester Polyol as Sustainable Biobased Material for Waterborne Polyurethane Dispersion. Polymers, 14(18), 3715. https://doi.org/10.3390/polym14183715