Anti-Freezing Nanocomposite Organohydrogels with High Strength and Toughness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Laponite NC Pre-Hydrogel
2.3. Preparation of Laponite NC Organohydrogels
2.4. Characterization
2.5. Mechanical Performance
2.6. Anti-Freezing Performance
3. Results and Discussion
3.1. Preparation of Pre-Hydrogel and NC Organohydrogels
3.2. Structure of the Pre-Hydrogels
3.3. Mechanical Properties of Pre-Hydrogels and NC Organohydrogels
3.4. Anti-Freezing Properties of NC Organohydrogels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Hao, J. Bioinspired organohydrogels with heterostructures: Fabrications, performances, and applications. Adv. Colloid Interface Sci. 2021, 292, 102408. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Lee Kang, H.; Anjum Dalaver, H.; Sougrat, R.; Jiang, Q.; Kim, H.; Alshareef Husam, N. Mxenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018, 4, 98. [Google Scholar] [CrossRef]
- Seo, H.S.; Bae, J.Y.; Kwon, K.; Shin, S. Synthesis and assessment of amps-based copolymers prepared via electron-beam irradiation for ionic conductive hydrogels. Polymers 2022, 14, 2547. [Google Scholar]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol 2021, 10, 935–952. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, Y.; Zhang, Y.; Zheng, J.; Wu, H.; Chen, Y.; Xu, S.; Yang, J.; Liu, C.; Zhang, Y. Dual cross-linked ion-based temperature-responsive conductive hydrogels with multiple sensors and steady electrocardiogram monitoring. Chem. Mater. 2020, 32, 7670–7678. [Google Scholar]
- Sano, K.; Ishida, Y.; Aida, T. Synthesis of anisotropic hydrogels and their applications. Angew. Chem. Int. Ed. Engl. 2018, 57, 2532–2543. [Google Scholar] [PubMed]
- Yuk, H.; Lu, B.; Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667. [Google Scholar] [CrossRef]
- Huang, J.; Fang, R.; Zhao, T.; Liu, M. Bioinspired functional organohydrogels with synergistic multiphases heterostructure. Polymer 2020, 190, 122214. [Google Scholar]
- Wang, K.; Wang, J.; Li, L.; Xu, L.; Feng, N.; Wang, Y.; Fei, X.; Tian, J.; Li, Y. Synthesis of a novel anti-freezing, non-drying antibacterial hydrogel dressing by one-pot method. Chem. Eng. J. 2019, 372, 216–225. [Google Scholar]
- Lu, C.; Chen, X. All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett. 2020, 20, 1907–1914. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, X.; Tang, H.; Wang, J.; Hao, Q.; Liu, L.; Li, Y.; Zhang, K.; Schmidt, O.G. Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 2019, 30, 1907218. [Google Scholar] [CrossRef]
- Gu, J.; Huang, J.; Chen, G.; Hou, L.; Zhang, J.; Zhang, X.; Yang, X.; Guan, L.; Jiang, X.; Liu, H. Multifunctional poly(vinyl alcohol) nanocomposite organohydrogel for flexible strain and temperature sensor. ACS Appl. Mater. Interfaces 2020, 12, 40815–40827. [Google Scholar] [CrossRef]
- Zhao, R.; Yang, H.; Nie, B.; Hu, L. Highly transparent, antifreezing and stretchable conductive organohydrogels for strain and pressure sensors. Sci. China Technol. Sci. 2021, 64, 2532–2540. [Google Scholar] [CrossRef]
- Zhang, X.F.; Ma, X.; Hou, T.; Guo, K.; Yin, J.; Wang, Z.; Shu, L.; He, M.; Yao, J. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem. Int. Ed. Engl. 2019, 58, 7366–7370. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Ren, Y.; Jin, G.; Zhang, C.; Chen, W.; Yan, F. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater. Horiz. 2020, 7, 919–927. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, W.; Gao, G.; Ren, X. Tough, anti-freezing and non-drying double network organohydrogels. Mater. Today Commun. 2019, 21, 100609. [Google Scholar] [CrossRef]
- Ding, Q.; Wu, Z.; Tao, K.; Wei, Y.; Wang, W.; Yang, B.-R.; Xie, X.; Wu, J. Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater. Horiz. 2022, 9, 1356–1386. [Google Scholar] [CrossRef]
- Yang, H.; Tan, Y.; Zhang, Y.; Xiong, Y.; Nie, G.; Luo, H.; He, P.; Yang, J.; Zhao, X.; Tong, J.; et al. Bionic scarfskin-inspired hierarchy configuration toward tunable microwave-absorbing performance. ACS Appl. Mater. Interfaces 2022, 14, 16669–16677. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, Y.; Ge, Z.; Zheng, J.; Liang, S.; Ma, Y.; Wen, M.; Li, J.; Sun, Z.; Liu, C.; et al. Physical cross-linkage constructed supramolecular conductive hydrogel as sustainable and remolded epidermal electronics. ACS Appl. Polym. Mater. 2022, 4, 2585–2594. [Google Scholar] [CrossRef]
- Rong, Q.; Lei, W.; Chen, L.; Yin, Y.; Zhou, J.; Liu, M. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem. Int. Ed. Engl. 2017, 56, 14159–14163. [Google Scholar] [CrossRef]
- Li, C.; Deng, X.; Zhou, X. Synthesis antifreezing and antidehydration organohydrogels: One-step in-situ gelling versus two-step solvent displacement. Polymers 2020, 12, 2670. [Google Scholar] [CrossRef]
- Sui, X.; Guo, H.; Chen, P.; Zhu, Y.; Wen, C.; Gao, Y.; Yang, J.; Zhang, X.; Zhang, L. Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature. Adv. Funct. Mater. 2019, 30, 1907986. [Google Scholar] [CrossRef]
- Chen, M.; Chen, J.; Zhou, W.; Han, X.; Yao, Y.; Wong, C.P. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 2021, 33, 2007559. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, X.; Lin, C.; Lin, D.; Ni, Y.; Chen, L.; Huang, L.; Cao, S.; Ma, X. Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with pedot:Sulfonated lignin as conductive materials. Chem. Eng. J. 2019, 370, 1039–1047. [Google Scholar] [CrossRef]
- Capicciotti, C.J.; Leclère, M.; Perras, F.A.; Bryce, D.L.; Paulin, H.; Harden, J.; Liu, Y.; Ben, R.N. Potent inhibition of ice recrystallization by low molecular weight carbohydrate-based surfactants and hydrogelators. Chem. Sci. 2012, 3, 1408. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, Y.; Chen, Y.; Han, X.; Jiang, F. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 2020, 30, 2003430. [Google Scholar] [CrossRef]
- Zhang, J.W.; Dong, D.D.; Guan, X.Y.; Zhang, E.M.; Chen, Y.M.; Yang, K.; Zhang, Y.X.; Khan, M.M.B.; Arfat, Y.; Aziz, Y. Physical organohydrogels with extreme strength and temperature tolerance. Front. Chem. 2020, 8, 102. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, D.; Wang, J.; Li, T.; Zhou, X.; Gan, T.; Handschuh-Wang, S.; Zhou, X. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew. Chem. Int. Ed. Engl. 2018, 57, 6568–6571. [Google Scholar] [CrossRef]
- Liao, H.; Guo, X.; Wan, P.; Yu, G. Conductive mxene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 2019, 29, 1904507. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Lu, X.; Han, S.; Yang, B.R.; Gui, X.; Tao, K.; Miao, J.; Liu, C. Ultrastretchable and stable strain sensors based on antifreezing and self-healing ionic organohydrogels for human motion monitoring. ACS Appl. Mater. Interfaces 2019, 11, 9405–9414. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Xu, H.; Wu, Q.; Liu, C.; Yang, B.-R.; Gui, X.; Xie, X.; Tao, K.; Shen, Y.; et al. An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 2019, 6, 595–603. [Google Scholar] [CrossRef]
- Haraguchi, K.; Takehisa, T. Nanocomposite hydrogels: A unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 2002, 14, 1120–1124. [Google Scholar] [CrossRef]
- Liang, L.; Hou, T.; Ouyang, Q.; Xie, L.; Zhong, S.; Li, P.; Li, S.; Li, C. Antimicrobial sodium alginate dressing immobilized with polydopamine-silver composite nanospheres. Composites, Part B 2020, 188, 107877. [Google Scholar] [CrossRef]
- Yang, J.; Tang, C.; Sun, H.; Liu, Z.; Liu, Z.; Li, K.; Zhu, L.; Qin, G.; Sun, G.; Li, Y.; et al. Tough, transparent, and anti-freezing nanocomposite organohydrogels with photochromic properties. ACS Appl. Mater. Interfaces 2021, 13, 31180–31192. [Google Scholar] [CrossRef]
- Sun, X.; Yao, F.; Li, J. Nanocomposite hydrogel-based strain and pressure sensors: A review. J. Mater. Chem. A 2020, 8, 18605–18623. [Google Scholar] [CrossRef]
- Kaniewska, K.; Karbarz, M.; Katz, E. Nanocomposite hydrogel films and coatings-features and applications. Appl. Mater. Today 2020, 20, 100776. [Google Scholar] [CrossRef]
- Wang, H.; Zou, Y.; Ji, Y.; Zhong, K.; Du, X.; Du, Z.; Cheng, X.; Wang, S. Tough and extremely temperature-tolerance nanocomposite organohydrogels as ultrasensitive wearable sensors for wireless human motion monitoring. Composites Part A 2022, 157, 106905. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, M.; Liu, X.; Zhang, W.; Sun, B.; Chen, Y.; Adler, H.-J.P. High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics. Polymer 2006, 47, 1–5. [Google Scholar] [CrossRef]
- Wang, D.; Tan, Y.; Yu, L.; Xiao, Z.; Du, J.; Ling, J.; Li, N.; Wang, J.; Xu, S.; Huang, J. Tuning morphology and mechanical property of polyacrylamide/laponite/titania dual nanocomposite hydrogels by titania. Polym. Compos. 2018, 40, 466–475. [Google Scholar] [CrossRef]
- Dai, N.; Feng, L.; Zhao, L.; Song, D.; Dai, X.; Liu, X.; Zhang, Y. A high-performance adsorbent of 2D laponite in-situ coated on 3D diatomite for advanced adsorption of cationic dye. Sci. China: Technol. Sci. 2022, 65, 1–13. [Google Scholar] [CrossRef]
- Zheng, W.; Xu, L.; Li, Y.; Huang, Y.; Li, B.; Jiang, Z.; Gao, G. Anti-freezing, moisturizing, resilient and conductive organohydrogel for sensitive pressure sensors. J. Colloid Interface Sci. 2021, 594, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, K.; Li, Y.; Lan, J.; Yan, B.; Shi, L.; Ran, R. High-strength, self-healable, temperature-sensitive, mxene-containing composite hydrogel as a smart compression sensor. ACS Appl. Mater. Interfaces 2019, 11, 47350–47357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, N.; Liu, W.; Zhao, X.; Lu, W. Intermolecular hydrogen bonding strategy to fabricate mechanically strong hydrogels with high elasticity and fatigue resistance. Soft Matter 2013, 9, 6331. [Google Scholar] [CrossRef]
- Du, J.; She, X.; Zhu, W.; Yang, Q.; Zhang, H.; Tsou, C. Super-tough, anti-fatigue, self-healable, anti-fogging, and uv shielding hybrid hydrogel prepared via simultaneous dual in situ sol-gel technique and radical polymerization. J Mater Chem B 2019, 7, 7162–7175. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Dong, D.; Yao, M.; Yu, Q.; Sun, X.; Guo, Q.; Zhang, H.; Yao, F.; Li, J. Freezing-tolerant supramolecular organohydrogel with high toughness, thermoplasticity, and healable and adhesive properties. ACS Appl. Mater. Interfaces 2019, 11, 21184–21193. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, Y.; Cao, Y.; Wang, X.; Chen, Y.; Liu, H.; Gao, Y.; Wang, J.; Liu, C.; Wang, W.; et al. Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chem. Eng. J. 2021, 403, 126431. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Cui, C.; Yang, J.; Liu, W. Antifouling super water absorbent supramolecular polymer hydrogel as an artificial vitreous body. Adv. Sci. 2018, 5, 1800711. [Google Scholar] [CrossRef]
- Wei, P.; Chen, T.; Chen, G.; Liu, H.; Mugaanire, I.T.; Hou, K.; Zhu, M. Conductive self-healing nanocomposite hydrogel skin sensors with antifreezing and thermoresponsive properties. ACS Appl. Mater. Interfaces 2020, 12, 3068–3079. [Google Scholar] [CrossRef]
- Morelle, X.P.; Illeperuma, W.R.; Tian, K.; Bai, R.; Suo, Z.; Vlassak, J.J. Highly stretchable and tough hydrogels below water freezing temperature. Adv. Mater. 2018, 30, 1801541. [Google Scholar] [CrossRef]
- Liu, X.; Yang, K.; Chang, M.; Wang, X.; Ren, J. Fabrication of cellulose nanocrystal reinforced nanocomposite hydrogel with self-healing properties. Carbohydr. Polym. 2020, 240, 116289. [Google Scholar] [CrossRef]
- Meijer, H.E.H.; Govaert, L.E. Mechanical performance of polymer systems: The relation between structure and properties. Prog. Polym. Sci. 2005, 30, 915–938. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Huang, Q.; Lu, M.; Fu, J.; Liang, Z.; Zhang, T.; Wang, D.; Li, C. Anti-Freezing Nanocomposite Organohydrogels with High Strength and Toughness. Polymers 2022, 14, 3721. https://doi.org/10.3390/polym14183721
Zheng H, Huang Q, Lu M, Fu J, Liang Z, Zhang T, Wang D, Li C. Anti-Freezing Nanocomposite Organohydrogels with High Strength and Toughness. Polymers. 2022; 14(18):3721. https://doi.org/10.3390/polym14183721
Chicago/Turabian StyleZheng, Huijuan, Qiqi Huang, Meijun Lu, Jiaxin Fu, Zhen Liang, Tong Zhang, Di Wang, and Chengpeng Li. 2022. "Anti-Freezing Nanocomposite Organohydrogels with High Strength and Toughness" Polymers 14, no. 18: 3721. https://doi.org/10.3390/polym14183721
APA StyleZheng, H., Huang, Q., Lu, M., Fu, J., Liang, Z., Zhang, T., Wang, D., & Li, C. (2022). Anti-Freezing Nanocomposite Organohydrogels with High Strength and Toughness. Polymers, 14(18), 3721. https://doi.org/10.3390/polym14183721