Development and Characterization of LLDPE Blends with Different UHMWPE Concentrations Obtained by Hot Pressing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dorigato, A. Recycling of polymer blends. Adv. Ind. Eng. Polym. Res. 2021, 4, 53–69. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Morreale, M.; Botta, L.; Mistretta, M.C.; Ceraulo, M.; Scaffaro, R. Degradation of polymer blends: A brief review. Polym. Degrad. Stab. 2017, 145, 79–92. [Google Scholar] [CrossRef]
- Yang, Y.; Le, T.H.; Kang, F.; Inagaki, M. Polymer blend techniques for designing carbon materials. Carbon N. Y. 2017, 111, 546–568. [Google Scholar] [CrossRef]
- Yang, H.; Hui, L.; Zhang, J.; Chen, P.; Li, W. Effect of entangled state of nascent UHMWPE on structural and mechanical properties of HDPE/UHMWPE blends. J. Appl. Polym. Sci. 2017, 134, 1–8. [Google Scholar] [CrossRef]
- Jaggi, H.S.; Satapathy, B.K.; Ray, A.R. Viscoelastic properties correlations to morphological and mechanical response of HDPE/UHMWPE blends. J. Polym. Res. 2014, 21, 1–13. [Google Scholar] [CrossRef]
- Mohammadian, Z.; Rezaei, M.; Azdast, T. Microstructure, physical, and mechanical properties of LDPE/UHMWPE blend foams: An experimental design methodology. J. Thermoplast. Compos. Mater. 2016, 29, 1229–1260. [Google Scholar] [CrossRef]
- Santos, C.M.D.; da Silva, B.C.; Backes, E.H.; Montagna, L.S.; Pessan, L.A.; Passador, F.R. Effect of LLDPE on aging resistance and thermal, mechanical, morphological properties of UHMWPE/LLDPE blends. Mater. Res. 2018, 21, e20180320. [Google Scholar] [CrossRef]
- Cardoso, P.S.M.; Ueki, M.M.; Barbosa, J.D.V.; Garcia Filho, F.C.; Lazarus, B.S.; Azevedo, J.B. The effect of dialkyl peroxide crosslinking on the properties of LLDPE and UHMWPE. Polymers 2021, 13, 3062. [Google Scholar] [CrossRef]
- Samad, M.A. Recent advances in uhmwpe/uhmwpe nanocomposite/uhmwpe hybrid nanocomposite polymer coatings for tribological applications: A comprehensive review. Polymers 2021, 13, 608. [Google Scholar] [CrossRef]
- Patel, K.; Chikkali, S.H.; Sivaram, S. Ultrahigh molecular weight polyethylene: Catalysis, structure, properties, processing and applications. Prog. Polym. Sci. 2020, 109, 101290. [Google Scholar] [CrossRef]
- Hussain, M.; Naqvi, R.A.; Abbas, N.; Khan, S.M.; Nawaz, S.; Hussain, A.; Zahra, N.; Khalid, M.W. Ultra-high-molecular-weight-polyethylene (UHMWPE) as a promising polymer material for biomedical applications: A concise review. Polymers 2020, 12, 323. [Google Scholar] [CrossRef]
- Thomas, S.; Visakh, P.M. Handbook of Engineering and Specialty Thermoplastics; Sabu, T., Visakh, P.M., Eds.; Wiley-Scrivener: Hoboken, NJ, USA, 2011; Volume 3, ISBN 9780470639252. [Google Scholar]
- He, S.; He, H.; Li, Y.; Wang, D. Effects of maleic anhydride grafted polyethylene on rheological, thermal, and mechanical properties of ultra high molecular weight polyethylene/poly(ethylene glycol) blends. J. Appl. Polym. Sci. 2015, 132, 1–9. [Google Scholar] [CrossRef]
- da Silva, B.C.; dos Santos, C.M.; de Oliveira Couto, C.A.; Backes, E.H.; Passador, F.R. Evaluation of Aging Resistance in UHMWPE/LLDPE Blend-Based Carbon Nanotubes Nanocomposites. Macromol. Symp. 2019, 383, 1700079. [Google Scholar] [CrossRef]
- Shah, V. Handbook of Plastics Testing and Failure Analysis, 4th ed.; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Coutinho, F.M.B.; Mello, I.L.; de Santa Maria, L.C. Polietileno: Principais tipos, propriedades e aplicações. Polímeros 2003, 13, 1–13. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, X.; Ye, N.; Song, N.; Sheng, J. Influence of composition and phase morphology on rheological properties of polypropylene/ poly(ethylene-co-octene) blends. Polym. Compos. 2010, 31, 105–113. [Google Scholar] [CrossRef]
- Martínez-Morlanes, M.J.; Pascual, F.J.; Guerin, G.; Puértolas, J.A. Influence of processing conditions on microstructural, mechanical and tribological properties of graphene nanoplatelet reinforced UHMWPE. J. Mech. Behav. Biomed. Mater. 2021, 115, 104248. [Google Scholar] [CrossRef]
- Ravi, K.; Ichikawa, Y.; Deplancke, T.; Ogawa, K.; Lame, O.; Cavaille, J.Y. Development of Ultra-High Molecular Weight Polyethylene (UHMWPE) Coating by Cold Spray Technique. J. Therm. Spray Technol. 2015, 24, 1015–1025. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. ASTM D6913-04 Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis; American Society for Testing and Materials: West Conshohocken, PA, USA, 2004; pp. 1–34. [Google Scholar]
- Peacock, A. Handbook of Polyethylene: Structures: Properties, and Applications, 1st ed.; Taylor & Francis Inc: New York, NY, USA, 2000; ISBN 9780824795467. [Google Scholar]
- American Society for Testing and Materials. ISO 527-1:2019 Plastics—Determination of Tensile Properties—Part 1: General Principles; American Society for Testing and Materials: West Conshohocken, PA, USA, 2019; pp. 1–26. [Google Scholar]
- Zuo, J.; Liu, S.; Zhao, J. Cocrystallization behavior of HDPE/UHMWPE blends prepared by two-step processing way. Polym. Polym. Compos. 2015, 23, 59–63. [Google Scholar] [CrossRef]
- Michler, G.H.; Baltá-Calleja, F.J. Mechanical Properties of Polymers Based on Nanostructure and Morphology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781420027136. [Google Scholar]
- González, J.; Rosales, C.; González, M.; León, N.; Escalona, R.; Rojas, H. Rheological and mechanical properties of blends of LDPE with high contents of UHMWPE wastes. J. Appl. Polym. Sci. 2017, 134, 1–13. [Google Scholar] [CrossRef]
- Golchin, A.; Villain, A.; Emami, N. Tribological behaviour of nanodiamond reinforced UHMWPE in water-lubricated contacts. Tribol. Int. 2017, 110, 195–200. [Google Scholar] [CrossRef]
- Chen, Y.; Zou, H.; Cao, Y.; Liang, M. Melt miscibility of HDPE/UHMWPE, LDPE/UHMWPE, and LLDPE/UHMWPE blends detected by dynamic rheometer. Polym. Sci.-Ser. A 2014, 56, 630–639. [Google Scholar] [CrossRef]
- Sweed, M. Co-Crystallization in Polyolefin Blends Studied by Various Crystallization Analysis Techniques. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, April 2006. [Google Scholar]
- Gai, J.G.; Zuo, Y. Metastable region of phase diagram: Optimum parameter range for processing ultrahigh molecular weight polyethylene blends. J. Mol. Model. 2012, 18, 2501–2512. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Mackley, M.R. The structure and rheology of molten ultra-high-molecular-mass polyethylene. Polymer 1994, 35, 5210–5216. [Google Scholar] [CrossRef]
- Wu, J.J.; Buckley, C.P.; O’Connor, J.J. Mechanical integrity of compression-moulded ultra-high molecular weight polyethylene: Effects of varying process conditions. Biomaterials 2002, 23, 3773–3783. [Google Scholar] [CrossRef]
- Diop, M.F.; Burghardt, W.R.; Torkelson, J.M. Well-mixed blends of HDPE and ultrahigh molecular weight polyethylene with major improvements in impact strength achieved via solid-state shear pulverization. Polymer 2014, 55, 4948–4958. [Google Scholar] [CrossRef]
- Heng, Z.; Chen, Y.; Zou, H.; Liang, M. Investigations of environmental stress cracking resistance of LDPE/UHMWPE and LDPE/EVA blends. Plast. Rubber Compos. 2015, 44, 218–225. [Google Scholar] [CrossRef]
- Sui, G.; Zhong, W.H.; Ren, X.; Wang, X.Q.; Yang, X.P. Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers. Mater. Chem. Phys. 2009, 115, 404–412. [Google Scholar] [CrossRef]
- Chen, Y.; Nie, X.; Zou, H.; Liang, M.; Liu, P. Structure and tensile properties change of LDPE/UHMWPE blends via solid state shear milling. J. Appl. Polym. Sci. 2013, 130, 2487–2493. [Google Scholar] [CrossRef]
- Boscoletto, A.B.; Franco, R.; Scapin, M.; Tavan, M. An investigation on rheological and impact behaviour of high density and ultra high molecular weight polyethylene mixtures. Eur. Polym. J. 1997, 33, 97–105. [Google Scholar] [CrossRef]
- Pisanu, L.; Santiago, L.C.; Barbosa, J.D.V.; Beal, V.E.; Nascimento, M.L.F. Strength shear test for adhesive joints between dissimilar materials obtained by multicomponent injection. Int. J. Adhes. Adhes. 2018, 86, 22–28. [Google Scholar] [CrossRef]
Formulation | 1st Heating | Cooling | Xc (%) | |||
---|---|---|---|---|---|---|
Tm1 (°C) | Tm2 (°C) | ΔH (J/g) | Tc1 (°C) | Tc2 (°C) | ||
LLDPE | 127.0 ± 0.4 | ----- | 153.1 ± 0.4 | 114.1 ± 0.1 | ----- | 52.7 ± 0.1 |
15 UHMWPE | 126.6 ± 0.4 | 132.4 ± 0.1 | 149.5 ± 0.1 | 113.9 ± 0.1 | 118.9 ± 0.2 | 46.0 ± 0.2 |
30 UHMWPE | 126.8 ± 0.1 | 131.6 ± 0.2 | 159.5 ± 0.7 | 113.7 ± 0.1 | 118.8 ± 0.1 | 51.3 ± 0.1 |
45 UHMWPE | 127.1 ± 0.9 | 131.5 ± 0.1 | 154.8 ± 0.1 | 113.5 ± 0.3 | 118.4 ± 0.2 | 53.0 ± 0.2 |
UHMWPE | ----------- | 132.7 ± 0.9 | 133.7 ± 0.4 | ---------- | 118.3 ± 0.1 | 45.3 ± 0.1 |
Formulation | 2nd Heating | Xc (%) | ||
---|---|---|---|---|
Tm1 (°C) | Tm2 (°C) | ΔH (J/g) | ||
LLDPE | 127.2 ± 0.1 | ----- | 154.4 ± 0.2 | 52.9 ± 0.1 |
15 UHMWPE | 126.9 ± 0.2 | 132.3 ± 0.1 | 156.3 ± 0.1 | 53.5 ± 0.0 |
30 UHMWPE | 127.1 ± 0.1 | 131.8 ± 0.1 | 164.3 ± 0.1 | 56.3 ± 0.1 |
45 UHMWPE | 126.8 ± 0.1 | 132.3 ± 0.1 | 167.8 ± 0.1 | 57.5 ± 0.1 |
UHMWPE | --------- | 132.8 ± 0.1 | 153.7 ± 0.9 | 52.6 ± 0.2 |
Formulation | σr (MPa) | Ɛr (%) | E (MPa) |
---|---|---|---|
LLDPE | 12.7 ± 1.1 | 175 ± 2 | 744 ± 9 |
15 UHMWPE | 17.2 ± 0.7 | 359 ± 1 | 561 ± 7 |
30 UHMWPE | 17.3 ± 0.5 | 328 ± 10 | 507 ± 58 |
45 UHMWPE | 16.3 ± 3.8 | 210 ± 5 | 526 ± 7 |
UHMWPE | 25.1 ± 0.7 | 187 ± 12 | 485 ± 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, P.M.; Ueki, M.M.; Barbosa, J.D.V.; Barbosa, W.T.; Lazarus, B.; Azevedo, J.B. Development and Characterization of LLDPE Blends with Different UHMWPE Concentrations Obtained by Hot Pressing. Polymers 2022, 14, 3723. https://doi.org/10.3390/polym14183723
Cardoso PM, Ueki MM, Barbosa JDV, Barbosa WT, Lazarus B, Azevedo JB. Development and Characterization of LLDPE Blends with Different UHMWPE Concentrations Obtained by Hot Pressing. Polymers. 2022; 14(18):3723. https://doi.org/10.3390/polym14183723
Chicago/Turabian StyleCardoso, Pollyana Melo, Marcelo Massayoshi Ueki, Josiane Dantas Viana Barbosa, Willams Teles Barbosa, Benjamin Lazarus, and Joyce Batista Azevedo. 2022. "Development and Characterization of LLDPE Blends with Different UHMWPE Concentrations Obtained by Hot Pressing" Polymers 14, no. 18: 3723. https://doi.org/10.3390/polym14183723
APA StyleCardoso, P. M., Ueki, M. M., Barbosa, J. D. V., Barbosa, W. T., Lazarus, B., & Azevedo, J. B. (2022). Development and Characterization of LLDPE Blends with Different UHMWPE Concentrations Obtained by Hot Pressing. Polymers, 14(18), 3723. https://doi.org/10.3390/polym14183723