Effect of Single and Synergistic Reinforcement of PVA Fiber and Nano-SiO2 on Workability and Compressive Strength of Geopolymer Composites
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Mix Proportions
2.3. Mixture Preparation
2.4. Slump Flow Test
2.5. Consistency Meter Test
- (i)
- The fresh geopolymer composites were put into the consistency meter container, then a rod was used to remove the air and the surface was flattened; the cone and ruler were adjusted to make the cone tip come into contact with the geopolymer composites’ surface.
- (ii)
- The bolt fixing the cone was loosened to make the cone freely insert into the geopolymer composites, then the bolt was tightened and the cone depth was measured.
- (iii)
- The cone and ruler were reset, a rod was used to remove the air and the surface was flattened.
- (iv)
- After 10 min, the cone depth was measured according to the above steps. The cone depth was obtained in the same way.
- (v)
- The difference in cone depth was calculated, and the thixotropy of fresh geopolymer composites could be characterized by .
2.6. Compressive Strength Test
3. Results and Discussion
3.1. Flowability
3.2. Thixotropy
3.3. Relationship between Thixotropy and Flowability of Geopolymer Composites
3.4. Compressive Strength
4. Conclusions
- (i)
- The incorporation of PVA fiber decreased the flowability of geopolymer composites, while the incorporation of SP increased the flowability of geopolymer composites. When the NS content increased, the flowability of geopolymer composites first increased and then decreased, reaching its best at 1.0%. In addition, the effect of the incorporation of PVA, NS and SP on the thixotropy of geopolymer composites was opposite to that on the flowability.
- (ii)
- There was a significant linear correlation between thixotropy and flowability of geopolymer composites (R2 > 0.85). Specifically, the cone depth had a positive correlation with the slump flow, while the cone depth difference had a negative correlation with the slump flow.
- (iii)
- The incorporation of single PVA fiber or NS would increase the compressive strength of geopolymer composites. Specifically, the compressive strength of geopolymer composites with 0.8% PVA fiber was 33.4% higher than that without PVA fiber, and the compressive strength of geopolymer composites with 1.5% NS was 16.4% higher than that without NS. Moreover, when the PVA fibers and NS coexist in geopolymer composites, 0.6% PVA significantly improved the compressive strength of geopolymer composites, while 1.0% NS could slightly improve the compressive strength of geopolymer composites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yang, H.M.; Zhang, S.M.; Lei, W.; Chen, P.; Shao, D.K.; Tang, S.W.; Li, J.Z. High-ferrite Portland cement with slag: Hydration, microstructure, and resistance to sulfate attack at elevated temperature. Cement Concrete Comp. 2022, 130, 104560. [Google Scholar] [CrossRef]
- Peng, Y.; Tang, S.; Huang, J.; Tang, C.; Liu, Y. Fractal analysis on pore structure and modeling of hydration of magnesium phosphate cement paste. Fractal Fract. 2022, 6, 337. [Google Scholar] [CrossRef]
- Davidovits, J. Properties of geopolymer cements. In First International Conference on Alkaline Cements and Concretes; Kiev State Technical University: Kiev, Ukraine, 1994; pp. 131–149. [Google Scholar]
- Oderji, S.Y.; Chen, B.; Ahmad, M.R.; Shah, S. Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. J. Clean. Prod. 2019, 225, 1–10. [Google Scholar] [CrossRef]
- Xiao, R.; Ma, Y.T.; Jiang, X.; Zhang, M.M.; Zhang, Y.Y.; Wang, Y.H.; Huang, B.S.; He, Q. Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. J. Clean. Prod. 2020, 252, 119610. [Google Scholar] [CrossRef]
- Bajpai, R.; Choudhary, K.; Srivastava, A.; Sangwan, K.S.; Singh, M. Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 2020, 254, 120147. [Google Scholar] [CrossRef]
- Wang, L.; Li, G.X.; Li, X.; Guo, F.X.; Lu, X.; Hanif, A. Influence of reactivity and dosage of MgO expansive agent on shrinkage and crack resistance of face slab concrete. Cement Concrete Comp. 2022, 126, 104333. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Z.; Liu, B.; Zhao, F.; Jin, M. Effects of fly ash dosage on shrinkage, crack resistance and fractal characteristics of face slab concrete. Fractal Fract. 2022, 6, 335. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M.Z. Fiber-reinforced geopolymer composites: A review. Cement Concrete Comp. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Zhuo, J.B.; Zhang, P.; Ma, M. Mechanical properties and meso-microscopic mechanism of basalt fiber-reinforced recycled aggregate concrete. J. Clean. Prod. 2022, 370, 133555. [Google Scholar] [CrossRef]
- Liu, Y.W.; Zhang, Z.H.; Shi, C.J.; Zhu, D.J.; Li, N.; Deng, Y.L. Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cement Concrete Comp. 2020, 112, 103670. [Google Scholar] [CrossRef]
- Guo, X.L.; Xiong, G.Y. Resistance of fiber-reinforced fly ash-steel slag based geopolymer mortar to sulfate attack and drying-wetting cycles. Constr. Build. Mater. 2021, 269, 121326. [Google Scholar] [CrossRef]
- Wen, C.C.; Zhang, P.; Wang, J.; Hu, S.W. Influence of fibers on the mechanical properties and durability of ultra-high-performance concrete: A review. J. Build. Eng. 2022, 52, 104370. [Google Scholar] [CrossRef]
- Chu, S.H.; Ye, H.; Huang, L.; Li, L.G. Carbon fiber reinforced geopolymer (FRG) mix design based on liquid film thickness. Constr. Build. Mater. 2021, 269, 121278. [Google Scholar] [CrossRef]
- Ma, S.Q.; Yang, H.L.; Zhao, S.J.; He, P.G.; Zhang, Z.H.; Duan, X.M.; Yang, Z.H.; Jia, D.C.; Zhou, Y. 3D-printing of architectured short carbon fiber-geopolymer composite. Compos. Part B-Eng. 2021, 226, 109348. [Google Scholar] [CrossRef]
- Humur, G.; Cevik, A. Effects of hybrid fibers and nanosilica on mechanical and durability properties of lightweight engineered geopolymer composites subjected to cyclic loading and heating-cooling cycles. Constr. Build. Mater. 2022, 326, 126846. [Google Scholar] [CrossRef]
- Kan, L.L.; Wang, W.S.; Liu, W.D.; Wu, M. Development and characterization of fly ash based pva fiber reinforced engineered geopolymer composites incorporating metakaolin. Cement Concrete Comp. 2020, 108, 103521. [Google Scholar] [CrossRef]
- Trindade, A.; Heravi, A.A.; Curosu, I.; Liebscher, M.; Silva, F.D.; Mechtcherine, V. Tensile behavior of strain-hardening geopolymer composites (SHGC) under impact loading. Cement Concrete Comp. 2020, 113, 103703. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Liu, Z.Z.; Hao, H.L.; Lu, Y.Y.; Li, S. Multi-scale effects of tensile properties of lightweight engineered geopolymer composites reinforced with MWCNTs and steel-PVA hybrid fibers. Constr. Build. Mater. 2022, 342, 128090. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, S.; Wu, J.; Zhang, Y.; Zheng, Y. Investigation of mechanical properties of PVA fiber-reinforced cementitious composites under the coupling effect of wet-thermal and chloride salt environment. Case. Stud. Constr. Mat. 2022, 17, e01325. [Google Scholar] [CrossRef]
- Wang, Y.; Chan, C.L.; Leong, S.H.; Zhang, M.Z. Engineering properties of strain hardening geopolymer composites with hybrid polyvinyl alcohol and recycled steel fibres. Constr. Build. Mater. 2020, 261, 120585. [Google Scholar] [CrossRef]
- Trindade, A.; Curosu, I.; Liebscher, M.; Mechtcherine, V.; Silva, F.D. On the mechanical performance of K- and Na-based strain-hardening geopolymer composites (SHGC) reinforced with PVA fibers. Constr. Build. Mater. 2020, 248, 118558. [Google Scholar] [CrossRef]
- Zahid, M.; Shafiq, N.; Razak, S.; Tufail, R.F. Investigating the effects of NaOH molarity and the geometry of PVA fibers on the post-cracking and the fracture behavior of engineered geopolymer composite. Constr. Build. Mater. 2020, 265, 120295. [Google Scholar] [CrossRef]
- Golewski, G.L.; Szostak, B. Strengthening the very early-age structure of cementitious composites with coal fly ash via incorporating a novel nanoadmixture based on C-S-H phase activators. Constr. Build. Mater. 2021, 312, 125426. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, P.; Wang, J.; Wang, K.X.; Zhang, T.H. Interfacial properties of geopolymer mortar and concrete substrate: Effect of polyvinyl alcohol fiber and Nano-SiO2 contents. Constr. Build. Mater. 2022, 315, 125735. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, W.S.; Lv, Y.J.; Gao, Z.; Dai, S.Y. Effect of polymer coatings on the permeability and chloride ion penetration resistances of nano-particles and fibers-modified cementitious composites. Polymers 2022, 14, 3258. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Li, W.G.; Gan, Y.X.; He, X.Z.; Castel, A.; Sheng, D.C. Nanoindentation on micromechanical properties and microstructure of geopolymer with Nano-SiO2 and Nano-TiO2. Cement Concrete Comp. 2021, 117, 103883. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhang, P.; Wang, T.Y.; Zheng, Y.; Qiu, L.H.; Sun, S.W. Compressive strength and anti-chloride ion penetration assessment of geopolymer mortar merging PVA fiber and Nano-SiO2 using RBF–BP composite neural network. Nanotechnol. Rev. 2022, 11, 1181–1192. [Google Scholar] [CrossRef]
- Szostak, B.; Golewski, G.L. Rheology of cement pastes with siliceous fly ash and the CSH nano-admixture. Materials 2021, 14, 3640. [Google Scholar] [CrossRef]
- Archez, J.; Texier-Mandoki, N.; Bourbon, X.; Caron, J.F.; Rossignol, S. Rossignol, Influence of the wollastonite and glass fibers on geopolymer composites workability and mechanical properties. Constr. Build. Mater. 2020, 257, 119511. [Google Scholar] [CrossRef]
- Xu, J.; Kang, A.H.; Wu, Z.G.; Xiao, P.; Gong, Y.F. Effect of high-calcium basalt fiber on the workability, mechanical properties and microstructure of slag-fly ash geopolymer grouting material. Constr. Build. Mater. 2021, 302, 124089. [Google Scholar] [CrossRef]
- Junior, J.; Saha, A.K.; Sarker, P.K.; Pramanik, A. Workability and flexural properties of fibre-reinforced geopolymer using different mono and hybrid fibres, materials. Materials 2021, 14, 4447. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos. Part B-Eng. 2019, 176, 107290. [Google Scholar] [CrossRef]
- Bong, S.H.; Nematollahi, B.; Xia, M.; Ghaffar, S.H.; Pan, J.L.; Dai, J.G. Properties of additively manufactured geopolymer incorporating mineral wollastonite microfibers. Constr. Build. Mater. 2022, 331, 127282. [Google Scholar] [CrossRef]
- Payakaniti, P.; Chuewangkam, N.; Yensano, R.; Pinitsoontorn, S.; Chindaprasirt, P. Changes in compressive strength, microstructure and magnetic properties of a high-calcium fly ash geopolymer subjected to high temperatures. Constr. Build. Mater. 2020, 265, 120650. [Google Scholar] [CrossRef]
- Zhang, P.; Kang, L.Y.; Zheng, Y.X.; Zhang, T.H.; Zhang, B. Influence of SiO2/Na2O molar ratio on mechanical properties and durability of metakaolin-fly ash blend alkali-activated sustainable mortar incorporating manufactured sand. J. Mater. Res. Technol. 2022, 18, 3553–3563. [Google Scholar] [CrossRef]
- Kan, L.L.; Wang, F. Mechanical properties of high ductile alkali-activated fiber reinforced composites incorporating red mud under different curing conditions. Ceram. Int. 2022, 48, 1999–2011. [Google Scholar] [CrossRef]
- Kan, L.L.; Wang, F.; Zhang, Z.; Kabala, W.; Zhao, Y.J. Mechanical properties of high ductile alkali-activated fiber reinforced composites with different curing ages. Constr. Build. Mater. 2021, 306, 124833. [Google Scholar] [CrossRef]
- Gholampour, A.; Ho, V.D.; Ozbakkaloglu, T. Ambient-cured geopolymer mortars prepared with waste-based sands: Mechanical and durability-related properties and microstructure. Compos. Part B-Eng. 2019, 160, 519–534. [Google Scholar] [CrossRef]
- Yeddula, B.; Karthiyaini, S. Experimental investigations and GEP modelling of compressive strength of ferrosialate based geopolymer mortars. Constr. Build. Mater. 2020, 236, 117602. [Google Scholar] [CrossRef]
- Sun, S. Adjustment and calculation of sodium silicate modulus. Technol. Build. Well 1984, 2, 28–31. (In Chinese) [Google Scholar]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.J.; Wang, T.Y. Influencing factors analysis and optimized prediction model for rheology and flowability of Nano-SiO2 and PVA fiber reinforced alkali-activated composites. J. Clean. Prod. 2022, 366, 132988. [Google Scholar] [CrossRef]
- GB/T 50080-2016; Stantard for Test Method of Performance of Ordinary Fresh Concrete. China Architecture and Building Press: Beijing, China, 2016. (In Chinese)
- Li, F.Y.; Shi, T.S.; Wang, D.H. Investigation on the thixotropy of concrete. Concrete 2000, 4, 8–13. (In Chinese) [Google Scholar]
- JGJ/T 70-2009; Standard for Test Method of Basic Properties of Construction Mortar. China Architecture and Building Press: Beijing, China, 2009. (In Chinese)
- Shah, S.; Chen, B.; Oderji, S.Y.; Haque, M.A.; Ahmad, M.R. Comparative study on the effect of fiber type and content on the performance of one-part alkali-activated mortar. Constr. Build. Mater. 2020, 243, 118221. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, P.; Guo, J.; Wang, K. Bonding behavior of concrete matrix and alkali-activated mortar incorporating Nano-SiO2 and polyvinyl alcohol fiber: Theoretical analysis and prediction model. Ceram. Int. 2021, 47, 31638–31649. [Google Scholar] [CrossRef]
- Zhang, H.; Sarker, P.K.; Wang, Q.Y.; He, B.; Jiang, Z.W. Strength and toughness of ambient-cured geopolymer concrete containing virgin and recycled fibres in mono and hybrid combinations. Constr. Build. Mater. 2021, 304, 124649. [Google Scholar] [CrossRef]
- Kadhim, S.; Cevik, A.; Nis, A.; Bakbak, D.; Aljanabi, M. Mechanical behavior of fiber reinforced slag-based geopolymer mortars incorporating artificial lightweight aggregate exposed to elevated temperatures. Constr. Build. Mater. 2021, 315, 125766. [Google Scholar] [CrossRef]
- Hu, C.F.; Li, L.; Li, Z.L. Effect of fiber factor on the workability and mechanical properties of polyethylene fiber-reinforced high toughness geopolymers. Ceram. Int. 2022, 48, 10458–10471. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, K.; Wang, J.; Guo, J.; Ling, Y. Macroscopic and microscopic analyses on mechanical performance of metakaolin/fly ash based geopolymer mortar. J. Clean. Prod. 2021, 294, 126193. [Google Scholar] [CrossRef]
- Seifan, M.; Mendoza, S.; Berenjian, A. Mechanical properties and durability performance of fly ash based mortar containing nano- and micro-silica additives. Constr. Build. Mater. 2020, 252, 119121. [Google Scholar] [CrossRef]
- Memon, F.A.; Nuruddin, M.F.; Demie, S.; Shafiq, N. Effect of superplasticizer and extra water on workability and compressive strength of self-compacting geopolymer concrete. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 407–414. [Google Scholar]
- El-Hassan, H.; Ismail, N. Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. J. Sustain. Cem.-Based Mater. 2018, 7, 122–140. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Ohenoja, K.; Kinnunen, P.; Illikainen, M. Suitability of commercial superplasticizers for one-part alkali-activated blast-furnace slag mortar. J. Sustain. Cem.-Based Mater. 2019, 8, 244–257. [Google Scholar] [CrossRef]
- Bong, S.H.; Nematollahi, B.; Nazari, A.; Xia, M.; Sanjayan, J. Efficiency of different superplasticizers and retarders on properties of ‘one-part’ fly ash-slag blended geopolymers with different activators. Materials 2019, 12, 3410. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.Y.; Zhang, P.; Wu, J.J.; Jing, Y.T.; Zhang, D.; Zhang, T.H. Comprehensive review of the properties of fly ash-based geopolymer with additive of Nano-SiO2. Nanotechnol. Rev. 2022, 11, 1478–1498. [Google Scholar] [CrossRef]
- Zerfu, K.; Ekaputri, J.J. Bond strength in PVA fibre reinforced fly ash-based geopolymer concrete. Mag. Civ. Eng. 2021, 101, 10105. [Google Scholar]
- Assaedi, H. The role of Nano-CaCO3 in the mechanical performance of polyvinyl alcohol fibre-reinforced geopolymer composites. Compos. Interface 2021, 28, 527–542. [Google Scholar] [CrossRef]
- Li, F.P.; Chen, D.F.; Yang, Z.M.; Lu, Y.Y.; Zhang, H.J.; Li, S. Effect of mixed fibers on fly ash-based geopolymer resistance against carbonation. Constr. Build. Mater. 2022, 322, 126394. [Google Scholar] [CrossRef]
- Zhang, P.; Han, X.; Hu, S.W.; Wang, J.; Wang, T.Y. High-temperature behavior of polyvinyl alcohol fiber-reinforced metakaolin/fly ash-based geopolymer mortar. Compos. Part B-Eng. 2022, 244, 110171. [Google Scholar] [CrossRef]
- Zidi, Z.; Ltifi, M.; Zafar, I. Synthesis and attributes of Nano-SiO2 local metakaolin based-geopolymer. J. Build. Eng. 2020, 33, 101586. [Google Scholar] [CrossRef]
Specific Surface Area (m2/g) | Stacking Density (g/cm3) | pH | Nominal Particle Size (nm) | Loss on Ignition (%) | |
---|---|---|---|---|---|
NS | 200 | 0.054 | 6.21 | 30 | 1.0 |
Fiber Length (mm) | Filament Diameter (μm) | Elongation at Fracture (%) | Flexural Strength (MPa) | ||
PVA fiber | 12 | 40 | 6.5 | 1560 |
Mix No. | Waterglass | NaOH | Water | Sand | MK | FA | PVA Fiber % | NS % | SP |
---|---|---|---|---|---|---|---|---|---|
kg/m3 | kg/m3 | ||||||||
P-0.2 | 445.4 | 71 | 106.2 | 613.6 | 429.5 | 184.1 | 0.2 | 0 | 3.07 |
P-0.4 | 445.4 | 71 | 106.2 | 613.6 | 429.5 | 184.1 | 0.4 | 0 | 3.07 |
P-0.6 | 445.4 | 71 | 106.2 | 613.6 | 429.5 | 184.1 | 0.6 | 0 | 3.07 |
P-0.8 | 445.4 | 71 | 106.2 | 613.6 | 429.5 | 184.1 | 0.8 | 0 | 3.07 |
P-1.0 | 445.4 | 71 | 106.2 | 613.6 | 429.5 | 184.1 | 1.0 | 0 | 3.07 |
P-1.2 | 445.4 | 71 | 106.2 | 613.6 | 427.2 | 183.1 | 1.2 | 0 | 3.07 |
N-0.5 | 445.4 | 71 | 106.2 | 613.6 | 425.0 | 182.2 | 0 | 0.5 | 3.07 |
N-1.0 | 445.4 | 71 | 106.2 | 613.6 | 422.7 | 181.2 | 0 | 1.0 | 3.07 |
N-1.5 | 445.4 | 71 | 106.2 | 613.6 | 420.4 | 180.2 | 0 | 1.5 | 3.07 |
N-2.0 | 445.4 | 71 | 106.2 | 613.6 | 425.0 | 182.2 | 0 | 2.0 | 3.07 |
N-2.5 | 445.4 | 71 | 106.2 | 613.6 | 425.0 | 182.2 | 0 | 2.5 | 3.07 |
PN-0.2-1.0 | 445.4 | 71 | 106.2 | 613.6 | 425.0 | 182.2 | 0.2 | 1.0 | 3.07 |
PN-0.4-1.0 | 445.4 | 71 | 106.2 | 613.6 | 425.0 | 182.2 | 0.4 | 1.0 | 3.07 |
PN-0.6-1.0 | 445.4 | 71 | 106.2 | 613.6 | 425.0 | 182.2 | 0.6 | 1.0 | 3.07 |
PN-0.8-1.0 | 445.4 | 71 | 106.2 | 613.6 | 427.2 | 183.1 | 0.8 | 1.0 | 3.07 |
PN-1.0-1.0 | 445.4 | 71 | 106.2 | 613.6 | 422.7 | 181.2 | 1.0 | 1.0 | 3.07 |
PN-1.2-1.0 | 445.4 | 71 | 106.2 | 613.6 | 420.4 | 180.2 | 1.2 | 1.0 | 3.07 |
PN-0.6-0.5 | 445.4 | 71 | 106.2 | 613.6 | 425.0 | 182.2 | 0.6 | 0.5 | 3.07 |
PN-0.6-1.5 | 445.4 | 71 | 106.2 | 613.6 | 420.4 | 180.2 | 0.6 | 1.5 | 3.07 |
PN-0.6-2.0 | 445.4 | 71 | 106.2 | 613.6 | 425.0 | 182.2 | 0.6 | 2.0 | 3.07 |
PN-0.6-2.5 | 445.4 | 71 | 106.2 | 613.6 | 420.4 | 180.2 | 0.6 | 2.5 | 3.07 |
S-0 | 445.4 | 71 | 106.2 | 613.6 | 429.5 | 184.1 | 0 | 0 | 1.84 |
S-0.25 | 445.4 | 71 | 106.2 | 613.6 | 429.5 | 184.1 | 0 | 0 | 2.46 |
S-0.5 | 445.4 | 71 | 106.2 | 613.6 | 429.5 | 184.1 | 0 | 0 | 3.07 |
S-0.75 | 445.4 | 71 | 106.2 | 613.6 | 429.5 | 184.1 | 0 | 0 | 3.68 |
S-1 | 445.4 | 71 | 106.2 | 613.6 | 429.5 | 184.1 | 0 | 0 | 4.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Wei, S.; Zheng, Y.; Wang, F.; Hu, S. Effect of Single and Synergistic Reinforcement of PVA Fiber and Nano-SiO2 on Workability and Compressive Strength of Geopolymer Composites. Polymers 2022, 14, 3765. https://doi.org/10.3390/polym14183765
Zhang P, Wei S, Zheng Y, Wang F, Hu S. Effect of Single and Synergistic Reinforcement of PVA Fiber and Nano-SiO2 on Workability and Compressive Strength of Geopolymer Composites. Polymers. 2022; 14(18):3765. https://doi.org/10.3390/polym14183765
Chicago/Turabian StyleZhang, Peng, Shiyao Wei, Yuanxun Zheng, Fei Wang, and Shaowei Hu. 2022. "Effect of Single and Synergistic Reinforcement of PVA Fiber and Nano-SiO2 on Workability and Compressive Strength of Geopolymer Composites" Polymers 14, no. 18: 3765. https://doi.org/10.3390/polym14183765
APA StyleZhang, P., Wei, S., Zheng, Y., Wang, F., & Hu, S. (2022). Effect of Single and Synergistic Reinforcement of PVA Fiber and Nano-SiO2 on Workability and Compressive Strength of Geopolymer Composites. Polymers, 14(18), 3765. https://doi.org/10.3390/polym14183765