Headspace Extraction of Chlorobenzenes from Water Using Electrospun Nanofibers Fabricated with Calix[4]arene-Doped Polyurethane–Polysulfone
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Electrospinning
2.4. The Procedure
3. Results and Discussion
3.1. Effect of Calixarene Type
3.2. Characterization
3.3. Impact of Ionic Strength
3.4. Impact of Extraction Temperature
3.5. Impact of Extraction Time
3.6. Impact of Desorption Time and Temperature
3.7. Method Validation
3.8. Analysis of Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Wang, J.; Zhu, P.; Han, Y.; Yu, A.; Li, J.; Sun, Z.; Row, K.H. The Separation of Chlorobenzene Compounds from Environmental Water Using a Magnetic Molecularly Imprinted Chitosan Membrane. Polymers 2022, 14, 3221. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Ahuja, S.; Arya, R.K. Experimental designing of polymer-polymer-solvent coatings: Poly (styrene)-poly (ethylene glycol)-chlorobenzene coating. Prog. Org. Coat. 2019, 128, 181–195. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, D.; Wu, F. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae. J. Hazard. Mater. 2016, 311, 186–193. [Google Scholar] [CrossRef] [PubMed]
- UNEP (United Nations Environment Program). Stockholm Convention on Persistent Organic Pollutants; UNEP: Geneva, Switzerland, 2011. [Google Scholar]
- WHO (World Health Organization). DDT use in disease vector control under the Stockholm Convention on Persistent Organic Pollutants. In WHO: Guidelines for Drinking-Water Quality; Regional Office for Americas/Pan American Sanitary Bureau (AMRO/PAHO) 525: Washington, DC, USA, 2004. [Google Scholar]
- Shirani, M.; Parandi, E.; Nodeh, H.R.; Akbari-Adergani, B.; Shahdadi, F. Development of a rapid efficient solid-phase microextraction: An overhead rotating flat surface sorbent based 3-D graphene oxide/lanthanum nanoparticles@ Ni foam for separation and determination of sulfonamides in animal-based food products. Food Chem. 2022, 373, 131421. [Google Scholar] [CrossRef]
- Shirani, M.; Aslani, A.; Sepahi, S.; Parandi, E.; Motamedi, A.; Jahanmard, E.; Nodeh, H.R.; Akbari-Adergani, B. An efficient 3D adsorbent foam based on graphene oxide/AgO nanoparticles for rapid vortex-assisted floating solid phase extraction of bisphenol A in canned food products. Anal. Methods 2022, 14, 2623–2630. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.U.R.; Ahmad, K.; Bashir, M.S.; Shah, S.S.A.; Najam, T.; Ashfaq, M. Metal organic frameworks for efficient catalytic conversion of CO2 and CO into applied products. Mol. Catal. 2022, 517, 112055. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, F.; Bian, Y.; Ji, R.; Song, Y.; Jiang, X. Co-and self-activated synthesis of tailored multimodal porous carbons for solid-phase microextraction of chlorobenzenes and polychlorinated biphenyls. J. Chromatogr. A 2019, 1585, 1–9. [Google Scholar] [CrossRef]
- Hussain, D.; Naqvi, S.T.R.; Ashiq, M.N.; Najam-ul-Haq, M. Analytical sample preparation by electrospun solid phase microextraction sorbents. Talanta 2020, 208, 120413. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, A.; Singh, H.; Suating, P.; Kim, H.S.; Sunwoo, K.; Shim, I.; Gibb, B.C.; Kim, J.S. Revisiting fluorescent calixarenes: From molecular sensors to smart materials. Chem. Rev. 2019, 119, 9657–9721. [Google Scholar]
- Chung, T.-S.; Lai, J.-Y. The potential of calixarenes for membrane separation. Chem. Eng. Res. Des. 2022, 183, 538–545. [Google Scholar]
- Zhu, F.; Zheng, Y.-M.; Zhang, B.-G.; Dai, Y.-R. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. J. Hazard. Mater. 2021, 401, 123608. [Google Scholar] [CrossRef] [PubMed]
- Háková, M.; Havlíková, L.C.; Solich, P.; Švec, F.; Šatínský, D. Electrospun nanofiber polymers as extraction phases in analytical chemistry—The advances of the last decade. TrAC Trends Anal. Chem. 2019, 110, 81–96. [Google Scholar] [CrossRef]
- Chen, M.; Wang, C.; Fang, W.; Wang, J.; Zhang, W.; Jin, G.; Diao, G. Electrospinning of calixarene-functionalized polyacrylonitrile nanofiber membranes and application as an adsorbent and catalyst support. Langmuir 2013, 29, 11858–11867. [Google Scholar] [CrossRef] [PubMed]
- Bayrakcı, M.; Özcan, F.; Ertul, Ş. Synthesis of calixamide nanofibers by electrospinning and toxic anion binding to the fiber structures. Tetrahedron 2015, 71, 3404–3410. [Google Scholar] [CrossRef]
- Özcan, F.; Bayrakcı, M.; Ertul, Ş. Synthesis and characterization of novel nanofiber based calixarene and its binding efficiency towards chromium and uranium ions. J. Incl. Phenom. Macrocycl. Chem. 2016, 85, 49–58. [Google Scholar] [CrossRef]
- Belardi, R.P.; Pawliszyn, J.B. The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. Water Qual. Res. J. 1989, 24, 179–191. [Google Scholar] [CrossRef]
- Shah, H.U.R.; Ahmad, K.; Naseem, H.A.; Parveen, S.; Ashfaq, M.; Aziz, T.; Shaheen, S.; Babras, A.; Shahzad, A. Synthetic routes of azo derivatives: A brief overview. J. Mol. Struct. 2021, 1244, 131181. [Google Scholar] [CrossRef]
- Ahmad, K.; Khan, M.S.; Iqbal, A.; Potrich, E.; Amaral, L.S.; Rasheed, S.; Ashfaq, M. Lead In drinking water: Adsorption method and role of zeolitic imidazolate frameworks for its remediation: A review. J. Clean. Prod. 2022, 368, 133010. [Google Scholar] [CrossRef]
- Solangi, I.B.; Bhatti, A.A.; Kamboh, M.A.; Memon, S.; Bhanger, M. Comparative fluoride sorption study of new calix [4] arene-based resins. Desalination 2011, 272, 98–106. [Google Scholar] [CrossRef]
- Parandi, E.; Pero, M.; Kiani, H. Phase change and crystallization behavior of water in biological systems and innovative freezing processes and methods for evaluating crystallization. Discov. Food 2022, 2, 6. [Google Scholar] [CrossRef]
- Mosleh, N.; Ahranjani, P.J.; Parandi, E.; Nodeh, H.R.; Nawrot, N.; Rezania, S.; Sathishkumar, P. Titanium lanthanum three oxides decorated magnetic graphene oxide for adsorption of lead ions from aqueous media. Environ. Res. 2022, 214, 113831. [Google Scholar] [CrossRef]
- Xu, S.; Dong, P.; Liu, H.; Li, H.; Chen, C.; Feng, S.; Fan, J. Lotus-like Ni@ NiO nanoparticles embedded porous carbon derived from MOF-74/cellulose nanocrystal hybrids as solid phase microextraction coating for ultrasensitive determination of chlorobenzenes from water. J. Hazard. Mater. 2022, 429, 128384. [Google Scholar] [CrossRef] [PubMed]
- Mosleh, N.; Najmi, M.; Parandi, E.; Nodeh, H.R.; Vasseghian, Y.; Rezania, S. Magnetic sporopollenin supported polyaniline developed for removal of lead ions from wastewater: Kinetic, isotherm and thermodynamic studies. Chemosphere 2022, 300, 134461. [Google Scholar] [CrossRef]
- Ahmad, K.; Ashfaq, M.; Nawaz, H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: A critical review. Rev. Inorg. Chem. 2022, 42, 197–227. [Google Scholar] [CrossRef]
- Bagheri, H.; Roostaie, A. Electrospun modified silica-polyamide nanocomposite as a novel fiber coating. J. Chromatogr. A 2014, 1324, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Aghakhani, A. Novel nanofiber coatings prepared by electrospinning technique for headspace solid-phase microextraction of chlorobenzenes from environmental samples. Anal. Methods 2011, 3, 1284–1289. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Lee, H.K. Trace analysis of ten chlorinated benzenes in water by headspace solid-phase microextraction. J. Chromatogr. A 2000, 874, 149–154. [Google Scholar] [CrossRef]
- Li, X.; Zeng, Z.; Xu, Y. A solid-phase microextraction fiber coated with diglycidyloxycalix [4] arene yields very high extraction selectivity and sensitivity during the analysis of chlorobenzenes in soil. Anal. Bioanal. Chem. 2006, 384, 1428–1437. [Google Scholar] [CrossRef]
- Sarrion, M.; Santos, F.; Galceran, M. Strategies for the analysis of chlorobenzenes in soils using solid-phase microextraction coupled with gas chromatography–ion trap mass spectrometry. J. Chromatogr. A 1998, 819, 197–209. [Google Scholar] [CrossRef]
Compound | LOD a | LOQ b | LDR c | R2 d | ||
---|---|---|---|---|---|---|
1,2,4-TCB | 1.0 | 4.0 | 4–800 | 0.9909 | ||
1,2,3-TCB | 0.1 | 0.4 | 0.4–1000 | 0.9911 | ||
1,2,3,4-TCB | 0.1 | 0.4 | 0.4–1000 | 0.9917 | ||
RSD% e | RSD% f | RSD% g | RSD% h | RSD% i | RSD% j | |
1,2,4-TCB | 1.7 | 10.1 | 9.7 | 3.6 | 8.8 | 3.4 |
1,2,3-TCB | 6.0 | 8.9 | 6.7 | 0.9 | 4.7 | 3.6 |
1,2,3,4-TCB | 3.8 | 5.5 | 3.5 | 1.4 | 5.2 | 0.9 |
Compound | RR a% (RSD%) b | |||
---|---|---|---|---|
40 pg mL−1 | Industrial Water c | Sewage Water d | Tap Water d | River Water e |
1,2,4-TCB | 105 (6.1) | 89 (5.6) | 101 (3.2) | 91 (7.5) |
1,2,3-TCB | 101 (2.8) | 94 (3.3) | 106 (3.9) | 95 (2.4) |
1,2,3,4-TCB | 90 (3.4) | 95 (2.3) | 104 (2.3) | 103 (1.7) |
400 pg mL−1 | ||||
1,2,4-TCB | 102 (3.9) | 82 (5.1) | 82 (3.7) | 81 (2.6) |
1,2,3-TCB | 89 (1.8) | 89 (2.8) | 89 (2.2) | 97 (2.0) |
1,2,3,4-TCB | 95 (1.0) | 80 (1.8) | 80 (1.8) | 100 (2.5) |
Sorbent | Method | Sample | LOD (pg mL−1) | LDR (pg mL−1) | Extraction Time (min) | Recovery% | RSD% | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
1,2,4-TCB | 1,2,3-TCB | 1,2,3,4-TCB | ||||||||
PU–PSU/calix nanofibers | HS-SPME-GC-ECD | water | 1 | 0.1 | 0.1 | 0.4–1000 | 5.5 | 80–106 | 4.7–10.1 | This work |
Polyacrylate a-SiO2 nanofibers | HS-SPME-GC-FID | water | 5 | - | - | 5–1000 | 15 | 94–103 | 4–12 | [27] |
PU nanofibers | HS-SPME-GC-MS | water | 10 | 10 | 10 | 50–1000 | 10 | 94–102 | 3–8 | [28] |
PDMS b | HS-SPME-GC-MS | water | 4 | 4 | 3 | 20–2000 | 30 | 91–107 | 1.8–6.7 | [29] |
PDMS | HS-SPME-GC-MS | soil | 2.35 | 4.48 | 0.92 | 13.3–1333 | 15 | - | - | [30] |
Diglycidyloxycalix[4]areene | HS-SPME-GC-ECD | soil | 0.2 | 0.34 | 0.18 | 5.33–533 | 15 | - | - | [30] |
Diglycidyloxycalix[4]areene | HS-SPME-GC-ECD | soil | 0.14 | 0.16 | 0.16 | 0.267–26.7 | 15 | 76–100 | 2.9–13.4 | [30] |
PDMS b | SPME-GC-IT-MS | soil | 46 | 30 | 40 | - | 50 | - | 2–15 | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najarzadekan, H.; Kamboh, M.A.; Sereshti, H.; Ahmad, I.; Sridewi, N.; Shahabuddin, S.; Rashidi Nodeh, H. Headspace Extraction of Chlorobenzenes from Water Using Electrospun Nanofibers Fabricated with Calix[4]arene-Doped Polyurethane–Polysulfone. Polymers 2022, 14, 3760. https://doi.org/10.3390/polym14183760
Najarzadekan H, Kamboh MA, Sereshti H, Ahmad I, Sridewi N, Shahabuddin S, Rashidi Nodeh H. Headspace Extraction of Chlorobenzenes from Water Using Electrospun Nanofibers Fabricated with Calix[4]arene-Doped Polyurethane–Polysulfone. Polymers. 2022; 14(18):3760. https://doi.org/10.3390/polym14183760
Chicago/Turabian StyleNajarzadekan, Hamid, Muhammad Afzal Kamboh, Hassan Sereshti, Irfan Ahmad, Nanthini Sridewi, Syed Shahabuddin, and Hamid Rashidi Nodeh. 2022. "Headspace Extraction of Chlorobenzenes from Water Using Electrospun Nanofibers Fabricated with Calix[4]arene-Doped Polyurethane–Polysulfone" Polymers 14, no. 18: 3760. https://doi.org/10.3390/polym14183760
APA StyleNajarzadekan, H., Kamboh, M. A., Sereshti, H., Ahmad, I., Sridewi, N., Shahabuddin, S., & Rashidi Nodeh, H. (2022). Headspace Extraction of Chlorobenzenes from Water Using Electrospun Nanofibers Fabricated with Calix[4]arene-Doped Polyurethane–Polysulfone. Polymers, 14(18), 3760. https://doi.org/10.3390/polym14183760