Modeling and Simulation of the Impact of Feed Gas Perturbation on CO2 Removal in a Polymeric Hollow Fiber Membrane
Abstract
:1. Introduction
2. Mathematical Model
2.1. Hollow Fiber Lumen (Solvent Flow)
2.2. Membrane Skin
2.3. The Shell of the Module (Gas Stream)
3. Mass Transfer Coefficient,
4. Results and Discussion
4.1. Model Validation
4.2. Gas Feed Perturbation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nieminen, H.; Järvinen, L.; Ruuskanen, V.; Laari, A.; Koiranen, T.; Ahola, J. Insights into a Membrane Contactor Based Demonstration Unit for CO2 Capture. Sep. Purif. Technol. 2020, 231, 115951. [Google Scholar] [CrossRef]
- Ho, C.-D.; Chang, H.; Lin, G.-H.; Chew, T.L. Enhancing Absorption Performance of CO2 by Amine Solution through the Spiral Wired Channel in Concentric Circular Membrane Contactors. Membranes 2022, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xue, K.; Cheng, C.; Gao, D.; Chen, H. Study on the Performance of CO2 Capture from Flue Gas with Ceramic Membrane Contactor. Sep. Purif. Technol. 2021, 265, 118521. [Google Scholar] [CrossRef]
- Ruan, H.; Wu, S.; Chen, X.; Zou, J.; Liao, J.; Cui, H.; Dong, Y.; Qiu, Y.; Shen, J. Capturing CO2 with NaOH Solution from Reject Brine via an Integrated Technology Based on Bipolar Membrane Electrodialysis and Hollow Fiber Membrane Contactor. Chem. Eng. J. 2022, 450, 138095. [Google Scholar] [CrossRef]
- Soroodan Miandoab, E.; Kentish, S.E.; Scholes, C.A. Non-Ideal Modelling of Polymeric Hollow-Fibre Membrane Systems: Pre-Combustion CO2 Capture Case Study. J. Memb. Sci. 2020, 595, 117470. [Google Scholar] [CrossRef]
- Mohammadi Saadat, M.; Norouzbahari, S.; Esmaeili, M. CO2/N2 Separation by Glycerol Aqueous Solution in a Hollow Fiber Membrane Contactor Module: CFD Simulation and Experimental Validation. Fuel 2022, 323, 124370. [Google Scholar] [CrossRef]
- Chen, G.; Chen, G.; Cao, F.; Zhang, R.; Gao, H.; Liang, Z. Mass Transfer Performance and Correlation for CO2 Absorption into Aqueous 3-Diethylaminopropylamine Solution in a Hollow Fiber Membrane Contactor. Chem. Eng. Process. Process Intensif. 2020, 152, 107932. [Google Scholar] [CrossRef]
- Ghasem, N. Modeling and Simulation of the Simultaneous Absorption/Stripping of CO2 with Potassium Glycinate Solution in Membrane Contactor. Membranes 2020, 10, 72. [Google Scholar] [CrossRef]
- Ghasem, N. CFD Simulation of CO2 Absorption by Water-Based TiO2 Nanoparticles in a High Pressure Stirred Vessel. Sci. Rep. 2021, 11, 1984. [Google Scholar] [CrossRef]
- Velasco, P.; Jegatheesan, V.; Othman, M. Modeling of Hollow Fiber Membrane Contactors (HFMCs) for the Recovery of Dissolved Methane from Anaerobic Effluents. Sep. Purif. Technol. 2022, 286, 120488. [Google Scholar] [CrossRef]
- Ghasem, N. Modeling and Simulation of CO2 Absorption Enhancement in Hollow-Fiber Membrane Contactors Using CNT–Water-Based Nanofluids. J. Membr. Sci. Res. 2019, 5, 295–302. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, J.; Xie, M.; Tong, X.; Jiang, T.; Yu, W.; Qu, D. An Integrated Hollow Fiber Membrane Contactor and Chemical Precipitation to Recover N, P and K from Human Urine Wastewater. J. Environ. Chem. Eng. 2022, 10, 107844. [Google Scholar] [CrossRef]
- Hosseini, E.; Soroodan Miandoab, E.; Stevens, G.W.; Scholes, C.A. Absorption of CO2 from Flue Gas under Oscillating Gas Flow Conditions in Gas-Solvent Hollow Fibre Membrane Contactors. Sep. Purif. Technol. 2020, 249, 117151. [Google Scholar] [CrossRef]
- Liang, C.Z.; Liu, J.T.; Lai, J.-Y.; Chung, T.-S. High-Performance Multiple-Layer PIM Composite Hollow Fiber Membranes for Gas Separation. J. Memb. Sci. 2018, 563, 93–106. [Google Scholar] [CrossRef]
- Liang, C.Z.; Yong, W.F.; Chung, T.-S. High-Performance Composite Hollow Fiber Membrane for Flue Gas and Air Separations. J. Memb. Sci. 2017, 541, 367–377. [Google Scholar] [CrossRef]
- Choi, J.; Cho, H.; Choi, Y.; Lee, S. Combination of Computational Fluid Dynamics and Design of Experiments to Optimize Modules for Direct Contact Membrane Distillation. Desalination 2022, 524, 115460. [Google Scholar] [CrossRef]
- Saidi, M. Mathematical Modeling of CO2 Absorption into Novel Reactive DEAB Solution in Hollow Fiber Membrane Contactors; Kinetic and Mass Transfer Investigation. J. Memb. Sci. 2017, 524, 186–196. [Google Scholar] [CrossRef]
- Kong, X.; Xu, P.; Fu, K.; Gong, D.; Chen, X.; Qiu, M.; Fan, Y. Critical Gas Velocity of Hydrophobic Ceramic Membrane Contactors for SO2 Absorption. Chem. Eng. Sci. 2021, 231, 116327. [Google Scholar] [CrossRef]
- Mansourizadeh, A.; Rezaei, I.; Lau, W.J.; Seah, M.Q.; Ismail, A.F. A Review on Recent Progress in Environmental Applications of Membrane Contactor Technology. J. Environ. Chem. Eng. 2022, 10, 107631. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Z.; Zhou, M.; Jie, X.; Wang, L.; Kang, G.; Cao, Y. Removal of CO2 from Biogas by Membrane Contactor Using PTFE Hollow Fibers with Smaller Diameter. J. Memb. Sci. 2021, 627, 119232. [Google Scholar] [CrossRef]
- Cesari, L.; Castel, C.; Favre, E. Membrane Contactors for Intensified Gas-Liquid Absorption Processes with Physical Solvents: A Critical Parametric Study. J. Memb. Sci. 2021, 635, 119377. [Google Scholar] [CrossRef]
- Houlker, S.; Davey, C.J.; Allemand, A.; Brookes, A.; Moore, A.; Vale, P.; Pidou, M.; McAdam, E.J. Reconciliation of Gas to Liquid Mass Transfer in Parallel and Transverse Flow (Cross-Flow) Hollow Fiber Membrane Contactors (HFMC) for CO2 Absorption. Sep. Sci. Technol. 2021, 56, 129–140. [Google Scholar] [CrossRef]
- Scholes, C.A.; Kentish, S.E.; Qader, A. Membrane Gas-Solvent Contactor Pilot Plant Trials for Post-Combustion CO2 Capture. Sep. Purif. Technol. 2020, 237, 116470. [Google Scholar] [CrossRef]
- Lian, S.; Song, C.; Liu, Q.; Duan, E.; Ren, H.; Kitamura, Y. Recent Advances in Ionic Liquids-Based Hybrid Processes for CO2 Capture and Utilization. J. Environ. Sci. 2021, 99, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Scholes, C.A.; Heath, D.E.; Kentish, S.E. Gas-Liquid Membrane Contactors for Carbon Dioxide Separation: A Review. Chem. Eng. J. 2021, 411, 128468. [Google Scholar] [CrossRef]
- Pang, H.; Chen, Z.; Gong, H.; Du, M. Fabrication of a Super Hydrophobic Polyvinylidene Fluoride–Hexadecyltrimethoxysilane Hybrid Membrane for Carbon Dioxide Absorption in a Membrane Contactor. J. Memb. Sci. 2020, 595, 117536. [Google Scholar] [CrossRef]
- Mohammed, H.N.; Ahmed, S.M.R.; Al-Naseri, H.; Al-Dahhan, M. Enhancement of CO2 Desorption from MEA-Based Nanofluids in Membrane Contactor: Simulation Study. Chem. Eng. Process. Process Intensif. 2021, 168, 108582. [Google Scholar] [CrossRef]
- Eslami, S.; Mousavi, S.M.; Danesh, S.; Banazadeh, H. Modeling and Simulation of CO2 Removal from Power Plant Flue Gas by PG Solution in a Hollow Fiber Membrane Contactor. Adv. Eng. Softw. 2011, 42, 612–620. [Google Scholar] [CrossRef]
- Shiravi, A.; Naderifar, A.; Raisi, A. Modeling of Carbon Dioxide Separation by Aqueous Ammonia Solution in a Hollow-Fiber Membrane Contactor. Chem. Eng. Technol. 2022, 45, 1637–1647. [Google Scholar] [CrossRef]
- Ghasem, N. Mass Transfer Modeling in Nanofluids: Theoretical Basics and Model Development. In Nanofluids and Mass Transfer; Elsevier: Amsterdam, The Netherlands, 2022; pp. 247–271. ISBN 9780128239964. [Google Scholar]
- Velasco, P.; Jegatheesan, V.; Othman, M. Effect of Long-Term Operations on the Performance of Hollow Fiber Membrane Contactor (HFMC) in Recovering Dissolved Methane from Anaerobic Effluent. Sci. Total Environ. 2022, 841, 488–496. [Google Scholar] [CrossRef]
- Pahnavar, N.; Keramat, F.; Azari, A.; Osfouri, S. Computational Fluid Dynamics Analysis of CO2 Absorption Intensification in an Hollow Fiber Membrane Contactor Using SiO2 and Carbon Nanotubes Nanofluids. Environ. Prog. Sustain. Energy 2022, 41, e13777. [Google Scholar] [CrossRef]
- Sohaib, Q.; Muhammad, A.; Younas, M.; Rezakazemi, M. Modeling Pre-Combustion CO2 Capture with Tubular Membrane Contactor Using Ionic Liquids at Elevated Temperatures. Sep. Purif. Technol. 2020, 241, 116677. [Google Scholar] [CrossRef]
- COMSOL. Multiphysics®, version 6.0; COMSOL AB: Stockholm, Sweden, 2022. Available online: www.comsol.com(accessed on 7 July 2022).
- Ghobadi, J.; Ramirez, D.; Khoramfar, S.; Jerman, R.; Crane, M.; Hobbs, K. Simultaneous Absorption of Carbon Dioxide and Nitrogen Dioxide from Simulated Flue Gas Stream Using Gas-Liquid Membrane Contacting System. Int. J. Greenh. Gas Control 2018, 77, 37–45. [Google Scholar] [CrossRef]
- Hosseini, E.; Soroodan Miandoab, E.; Stevens, G.; Scholes, C.A. Vibration-Induced Enhanced Mass Transfer within Membrane Contactors for Efficient CO2 Capture. Sep. Purif. Technol. 2022, 295, 121251. [Google Scholar] [CrossRef]
- Soroodan Miandoab, E.; Scholes, C.A. A Rigorous Membrane Gas-Solvent Contactor Model for Flowsheet Simulation of the Carbon Capture Process. Ind. Eng. Chem. Res. 2022, 61, 9381–9393. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Y.; Zhang, Z.; Yao, J. Preparation and Characterization of OH/SiO2-TiO2/PES Composite Hollow Fiber Membrane Using Gas-Liquid Membrane Contactor for CO2/CH4 Separation. Sep. Purif. Technol. 2022, 288, 120551. [Google Scholar] [CrossRef]
- Cao, Y.; Nakhjiri, A.T.; Sarkar, S.M.; Ghadiri, M. Time-Dependent Numerical Investigation of 3-Hydroxypropionic Acid Extraction Using a Microporous Membrane Contactor. Eur. Phys. J. Plus 2022, 137, 494. [Google Scholar] [CrossRef]
- Wu, J.; Pan, Z.; Shang, L.; Sun, X.; Sun, C.; Sun, X. Characteristics of CO2 Absorption by N,N-Dimethylethanolamine (DMEA) in Hollow Fiber Membrane Contactor. Huagong Jinzhan Chem. Ind. Eng. Prog. 2022, 41, 2132–2139. [Google Scholar] [CrossRef]
Number of fibers | 20 |
Hollow fiber, inner radius, mm | 0.21 |
Hollow fiber, outer radius, mm | 0.55 |
Module inside radius, m | 0.008 |
Module length, m | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasem, N. Modeling and Simulation of the Impact of Feed Gas Perturbation on CO2 Removal in a Polymeric Hollow Fiber Membrane. Polymers 2022, 14, 3783. https://doi.org/10.3390/polym14183783
Ghasem N. Modeling and Simulation of the Impact of Feed Gas Perturbation on CO2 Removal in a Polymeric Hollow Fiber Membrane. Polymers. 2022; 14(18):3783. https://doi.org/10.3390/polym14183783
Chicago/Turabian StyleGhasem, Nayef. 2022. "Modeling and Simulation of the Impact of Feed Gas Perturbation on CO2 Removal in a Polymeric Hollow Fiber Membrane" Polymers 14, no. 18: 3783. https://doi.org/10.3390/polym14183783
APA StyleGhasem, N. (2022). Modeling and Simulation of the Impact of Feed Gas Perturbation on CO2 Removal in a Polymeric Hollow Fiber Membrane. Polymers, 14(18), 3783. https://doi.org/10.3390/polym14183783