Polymer Foam Concrete FC500 Material Behavior and Its Interaction in a Composite Structure with Standard Cement Concrete Using Small Scale Tests
Abstract
:1. Introduction
1.1. Properties of Foam Concrete
1.2. Testing Methods of Foam Concrete
2. Methodology
2.1. Input Parameters
2.2. Double Integration Method–Analytical Investigation Used for the Foam Concrete Models
2.3. Experimental Measurements
2.4. Finite Element Method–Numerical Method Used for the Foam Concrete Models
- Discretization of the body to a finite number of elements
- Approximation of force or deformation quantities on each single element
- Integration of finite elements into a whole while maintaining continuity of deformations
- Energy minimization-solving boundary condition equations and determining unknown nodal parameters
- Determination of unknowns at each finite element, and hence calculation of internal forces [23].
Principle of the Finite Element Method
3. Results
3.1. Results of Analytic Models
3.2. Results of Experimental Measurements
Calibration of Experimental Setup
3.3. Results of Experimental Measurements of Foam Concrete
3.4. Results of Finite Element Method
3.4.1. Definition of Stress Strain Diagram of Foam Concrete FC500
3.4.2. Comparison of Theoretical Approaches FEM and Analytic
3.4.3. Experimental Measurements Compared with the Analytical Models
3.4.4. Experimental Measurements Compared with the FEM Models
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gökçe, M.; Seker, B. Foam Concrete. J. New Results Sci. JNRS 2020, 9, 9–18. [Google Scholar]
- Valore, R., Jr. Cellular concretes Part 2 physical properties. ACI J. Proc. 1954, 6, 50. [Google Scholar]
- Ramamurthy, K.; Nambiar, E.; Ranjani, G.I.S. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Amran, Y.M.; Farzadnia, N.; Ali, A.A. Properties and applications of foamed concrete; a review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Jalal, M.D.; Tanveer, A.; Jagdeesh, K.; Ahmed, F. Foam Concrete. Int. J. Civ. Eng. Res. 2017, 8, 1–14. [Google Scholar]
- Kadela, M.; Kukiełka, A.; Małek, M. Characteristics of Lightweight Concrete Based on a Synthetic Polymer Foaming Agent. Materials 2020, 13, 4979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef]
- Dhasindrakrishna, K.; Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J. Progress, current thinking and challenges in geopolymer foam concrete technology. Cem. Concr. Compos. 2021, 116, 103886. [Google Scholar] [CrossRef]
- Memon, S.A. Characteristics of Foam Concrete Produced from Detergent used as Foaming Agent. Int. J. Appl. Eng. Res. 2018, 13, 14806–14812. [Google Scholar]
- Liew, A.C.M. New Innovative Lightweight Foam Concrete Technology. In Use of Foamed Concrete in Construction, Proceedings of the International Conference Held at the University of Dundee, Scotland, UK, 5 July 2005; Thomas Telford Publishing: London, UK, 2005; pp. 45–50. [Google Scholar]
- Fu, Y.; Wang, X.; Wang, L.; Li, Y. Foam concrete: A state-of-the-art and state-of-the-practice review. Adv. Mater. Sci. Eng. 2020, 2020, 6153602. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, X.; Yang, X.; Xiao, Y. Comprehensive tests and quasi-brittle fracture modeling of light-weight foam concrete with expanded clay aggregates. Cem. Concr. Compos. 2021, 115, 103822. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B.C.; Shen, X.J. The optimized design of dog-bones for tensile test of ultra-high performance concrete. Eng. Mech. 2018, 35, 37–46. [Google Scholar]
- Hulimka, J.; Krzywoń, R.; Jędrzejewska, A. Laboratory tests of foam concrete slabs reinforced with composite grid. Procedia Eng. 2017, 193, 337–344. [Google Scholar] [CrossRef]
- Hajek, M.; Decky, M.; Drusa, M.; Orininová, L.; Scherfel, W. Elasticity Modulus and Flexural Strength Assessment of Foam Concrete Layer of Poroflow. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 44, p. 022021. [Google Scholar]
- Decky, M.; Hodasova, K.; Papanova, Z.; Remisova, E. Sustainable Adaptive Cycle Pavements Using Composite Foam Concrete at High Altitudes in Central Europe. Sustainability 2022, 14, 9034. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Bui, H.H.; Ngo, T.D.; Nguyen, G.D. Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete. Mater. Des. 2017, 130, 103–119. [Google Scholar] [CrossRef]
- Ahmad, H.; Sugiman, S.; Jaini, Z.M.; Omar, Z. Numerical Modelling of Foamed Concrete Beam under Flexural Using Traction-Separation Relationship. Lat. Am. J. Solids Struct. 2021, 18, 1–13. [Google Scholar] [CrossRef]
- Rizvi, Z.H.; Sattari, A.S.; Wuttke, F. Meso Scale Modelling of Infill Foam Concrete Wall for Earthquake Loads. In Proceedings of the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece, 18–21 June 2018. [Google Scholar]
- Drusa, M.; Vlcek, J.; Scherfel, W.; Sedlar, B. Testing of Foam Concrete for Definition of Layer Interacting with Subsoil in Geotechnical Application. GEOMATE J. 2019, 17, 115–120. [Google Scholar] [CrossRef]
- Prišč, M. Experimentálna Identifikácia Materiálových Vlastností Ľahkých Foriem Betónu na Malorozmerových Vzorkách. Bachelor’s Thesis, Žilinská Univerzita v Žiline, Žilina, Slovakia, 2021. [Google Scholar]
- GeoGebra. Available online: https://www.geogebra.org/ (accessed on 23 April 2022).
- Králik, J. Modelovanie Konštrukcií v Metóde Konečných Prvkov. In Systém ANSYS; Slovenská Technická Univerzita v Brazislave, Stavebná Fakulta: Bratislava, Slovakia, 2009. [Google Scholar]
- Murín, J.; Hrabovský, J.; Kutiš, V. Metóda Konečných Prvkov—Vybrané Kapitoly pre Mechatronikov; Slovenská Technická Univerzita v Bratislave: Bratislava, Slovakia, 2014. [Google Scholar]
- Michlin, S.G.; Smolickij, C.L. Približné Metódy Riešenia Diferenciálnych A Inegrálnych Rovníc, Preklad; Vydaveteľstvo Alfa: Bratislava, Slovakia, 1974. [Google Scholar]
- Kneschke, A. Používanie Diferenciálnych Rovníc v Praxi, Preklad; Nakladateľstvo Alfa: Bratislava, Slovakia, 1969. [Google Scholar]
- Kozłowski, M.; Kadela, M. Mechanical Characterization of Lightweight Foamed Concrete. Adv. Mater. Sci. Eng. 2018, 2018, 6801258. [Google Scholar] [CrossRef]
- Thang, T.; Nguyen, H.H.; Bui, T.D.; Ngo, G.D.; Nguyen, M.U.; Kreher, F.D. A micromechanical investigation for the effects of pore size and its distribution on geopolymer foam concrete under uniaxial compression. Eng. Fract. Mech. 2019, 209, 228–244. [Google Scholar]
- Kuzielová, E.; Pach, L.; Palou, M. Effect of activated foaming agent on the foam concrete properties. Constr. Build. Mater. 2016, 125, 998–1004. [Google Scholar] [CrossRef]
- Papán, D.; Papánová, Z. Higher Frequency Dynamic Response Analysis of the Foam Concrete Block Element. In Proceedings of the MATEC Web of Conferences (XXVII R-S-P Seminar 2018, Theoretical Foundation of Civil Engineering), Rostov-on-Don, Russia, 17–21 September 2018; Volume 196, p. 01037. [Google Scholar]
- Hájek, M.; Decký, M.; Scherfel, W. Objectification of modulus elasticity of foam concrete poroflow 17-5 on the subbase layer. Civ. Environ. Eng. 2016, 12, 55–62. [Google Scholar] [CrossRef]
- Hájek, M.; Decký, M. Homomorphic model pavement with sub base layer of foam concrete. Procedia Eng. 2017, 192, 283–288. [Google Scholar] [CrossRef]
- Decký, M.; Remišová, E.; Mečár, M.; Bartuška, L.; Lizbetin, J.; Drevený, I. In situ determination of load bearing capacity of soils on the airfields. Procedia Earth Planet. Sci. 2015, 15, 11–18. [Google Scholar] [CrossRef]
- Izvolt, L.; Dobes, P.; Drusa, M.; Kadela, M.; Holesova, M. Experimental and numerical verification of the railway track substructure with innovative thermal insulation materials. Materials 2021, 15, 160. [Google Scholar] [CrossRef]
Type | E [GPa] | v | ρ | fcf | fc | ft | |
---|---|---|---|---|---|---|---|
Tension | Compression | [-] | [kg/m3] | [MPa] | [MPa] | [MPa] | |
FC 500 | - | 1.2~2.5 | 0.11 | 584 | 0.35 | 0.472 | - |
- | 1.2~2.5 | 0.2 | 584 | 0.35 | 0.708 | - | |
0.34 | - | - | - | - | - | 0.1 | |
- | - | - | 512 | 0.36 | - | - | |
Not specified | - | 1.2 | 0.2 | 1600 | 1.86 | - | - |
0.56 | - | - | 650 | - | 1.9 | 0.28 | |
- | 2.6 | - | 1000 | - | 2.6 | 0.82 | |
0.24 | - | - | - | - | 7.74 | - | |
- | - | - | 400 | - | 1.16 | 0.1 | |
- | - | - | 500 | - | 2 | 0.2 | |
- | - | - | 600 | - | 3.5 | 0.3 | |
- | - | - | 500 | - | 2.8 | - |
Type | E [GPa] | v | ρ | fcf | fc | ft | |
---|---|---|---|---|---|---|---|
Tension | Compression | [-] | [kg/m3] | [MPa] | [MPa] | [MPa] | |
FC500 | 0.3 | 1.2 | 0.2 | 500 | 0.35 | 1 | 0.15 |
Specimen | b [mm] | h [mm] | m [g] | ρ [kg/m3] | Ffat [N] | wfat [mm] | σfat [MPa] | Eexp [MPa] |
---|---|---|---|---|---|---|---|---|
31030420 | 100.5 | 104.2 | 2512 | 790 | 288.7 | −0.48 | 0.41 | 495 |
32030420 | 97.4 | 103.6 | 2437 | 800 | 297.5 | −1.36 | 0.44 | 495 |
33030420 | 101.8 | 104.9 | 2559 | 790 | 261.9 | −0.38 | 0.36 | 475 |
34030420 | 102.4 | 105.1 | 2531 | 780 | 222.8 | −0.31 | 0.30 | 575 |
35030420 | 97.1 | 105.1 | 2435 | 790 | 240.9 | −0.67 | 0.35 | 530 |
36030420 | 100.4 | 105.1 | 2518 | 790 | 220.5 | −0.38 | 0.31 | 550 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papán, D.; Ďugel, D.; Papánová, Z.; Ščotka, M. Polymer Foam Concrete FC500 Material Behavior and Its Interaction in a Composite Structure with Standard Cement Concrete Using Small Scale Tests. Polymers 2022, 14, 3786. https://doi.org/10.3390/polym14183786
Papán D, Ďugel D, Papánová Z, Ščotka M. Polymer Foam Concrete FC500 Material Behavior and Its Interaction in a Composite Structure with Standard Cement Concrete Using Small Scale Tests. Polymers. 2022; 14(18):3786. https://doi.org/10.3390/polym14183786
Chicago/Turabian StylePapán, Daniel, Daniel Ďugel, Zuzana Papánová, and Martin Ščotka. 2022. "Polymer Foam Concrete FC500 Material Behavior and Its Interaction in a Composite Structure with Standard Cement Concrete Using Small Scale Tests" Polymers 14, no. 18: 3786. https://doi.org/10.3390/polym14183786
APA StylePapán, D., Ďugel, D., Papánová, Z., & Ščotka, M. (2022). Polymer Foam Concrete FC500 Material Behavior and Its Interaction in a Composite Structure with Standard Cement Concrete Using Small Scale Tests. Polymers, 14(18), 3786. https://doi.org/10.3390/polym14183786