Analysis of the Influence of Production Method, Plastic Content on the Basic Performance of Waste Plastic Modified Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt
2.1.2. Plastic
2.1.3. Preparation of Plastic Modified Asphalt
2.2. Experimental Methods
2.2.1. Orthogonal Test
2.2.2. Physical Property Tests
- Penetration refers to the vertical penetration distance of a standard needle under constant load (100 g) for 5 s at a temperature of 25 °C. It is measured in 0.1 mm units and is used to assess the hardness of asphalt.
- The softening point is the average value of the temperature. The steel ball passes through the asphalt plate and falls from a height. When the steel ball just touches the bottom plate at a specified distance, the water temperature at this time is the softening point of the asphalt.
- The 135 °C viscosity is a basic characteristic that reflects the frictional resistance between the internal molecules of asphalt during flow deformation.
- The 5 °C ductility refers to the length at which the prepared sample is stretched at a certain temperature and a certain speed to break.
2.2.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.2.4. Thermogravimetric Differential Scanning Calorimetry (TG-DSC)
3. Results and Discussion
3.1. Orthogonal Test Analysis
3.1.1. Optimal Preparation Parameters of PE Modified Asphalt
3.1.2. Optimal Preparation Parameters of PP Modified Asphalt
3.2. Influence of Plastic Contents on Physical Properties of Base Asphalt
3.2.1. Effect of PE Contents on the Modified Asphalt
3.2.2. Effect of PP Contents on the Modified Asphalt
3.3. Comparative Analysis of Basic Performances with SBS Modified Asphalt
3.4. Mechanism Analysis of Plastic-Modified Asphalt
3.4.1. Effects of Functional Groups on Plastic-Modified Asphalt
3.4.2. Thermogravimetric Analysis
4. Conclusions
- (1)
- The performance of base asphalt can obviously be affected by PE and PP. The proper preparation parameters were 30 min shearing time, 170 °C shearing temperature, and 3000 r/min shearing rate. The optimal dosage for the PE and PP were recommended to be 5% and 9% respectively.
- (2)
- When compared with SBS modifiers, the waste plastic, adequately met the requirements of the relevant specification, whilst only lagging behind these expensive specially produced modifiers, by small margins. As in the case of the softening point, where the waste plastic modified asphalts were only lower by an average of 8.2% than the special modifiers, indicating the efficiency of waste plastic modifiers as an economical substitute.
- (3)
- The plastic-modified asphalt and the base asphalt had similar functional groups, especially the positions of the C-H stretching absorption peaks, CH3, and CH2 variable angle absorption peaks of the cycloalkanes and alkanes. There were no new absorption peaks which indicated that the mixing process of asphalt and waste plastic was a physical swelling reaction.
- (4)
- The plastic-modified asphalt showed better thermal stability with a mass loss of about 33.3%. Due to the absorbing and light-reducing components of asphalt, the mass loss process of plastic-modified asphalt was shorter. The temperature sensitivity of waste plastic-modified asphalt was reduced since the endothermic peak area and exothermic peak area of the DSC curve increased obviously.
- (5)
- The good high-temperature performance of plastic-modified asphalt made it more suitable in high-temperature regions. Since PE was the most produced plastic type, it is recommended to reuse it as a modifier in asphalt; it will therefore achieve an additional environmental conservation aim and provide a new way for the recycling of waste materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Zhang, F.; Feng, Z.; Li, W.; Zou, X. Study on waste engine oil and waste cooking oil on performance improvement of aged asphalt and application in reclaimed asphalt mixture. Constr. Build. Mater. 2021, 276, 122138. [Google Scholar]
- Li, H.; Feng, Z.; Liu, H.; Ahmed, A.T.; Zhang, M.; Zhao, G.; Guo, P.; Sheng, Y. Performance and inorganic fume emission reduction of desulfurized rubber powder/styrene–butadiene–styrene composite modified asphalt and its mixture. J. Clean. Prod. 2022, 364, 132690. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L. Chinese waste plastic recycling volume ranks first in the world. Guangming Daily, 26 April 2022. [Google Scholar]
- Padhan, R.K.; Sreeram, A. Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives. Constr. Build. Mater. 2018, 188, 772–780. [Google Scholar] [CrossRef]
- Punith, V.; Veeraragavan, A. Behavior of reclaimed polyethylene modified asphalt cement for paving purposes. J. Mater. Civ. Eng. 2011, 23, 833–845. [Google Scholar] [CrossRef]
- Ghuzlan, K.A.; Al-Khateeb, G.G.; Qasem, Y. Rheological properties of polyethylene-modified asphalt binder. Athens J. Technol. Eng. 2013, 10, 1–14. [Google Scholar] [CrossRef]
- Jianmin, M.; Nawarathna, H.M.C.; Hesp, S.A.M. On the sustainable use of recycled plastics in flexible asphalt pavements. J. Clean. Prod. 2022, 359, 132081. [Google Scholar]
- Al-Hadidy, A. Engineering behavior of aged polypropylene-modified asphalt pavements. Constr. Build. Mater. 2018, 191, 187–192. [Google Scholar] [CrossRef]
- Dalhat, M.; Al-Abdul Wahhab, H. Performance of recycled plastic waste modified asphalt binder in Saudi Arabia. Int. J. Pavement Eng. 2017, 18, 349–357. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C. The research for crumb rubber/waste plastic compound modified asphalt. J. Therm. Anal. Calorim. 2016, 124, 729–741. [Google Scholar] [CrossRef]
- Liang, M.; Ren, S.; Fan, W.; Xin, X.; Shi, J.; Luo, H. Rheological property and stability of polymer modified asphalt: Effect of various vinyl-acetate structures in EVA copolymers. Constr. Build. Mater. 2017, 137, 367–380. [Google Scholar] [CrossRef]
- Fang, C.; Zhou, S.; Zhang, M.; Zhao, S. Modification of waterproofing asphalt by PVC packaging waste. J. Vinyl Addit. Technol. 2009, 15, 229–233. [Google Scholar] [CrossRef]
- Modarres, A.; Hamedi, H. Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes. Mater. Des. 2014, 61, 8–15. [Google Scholar] [CrossRef]
- Xu, X.; Leng, Z.; Lan, J.; Wang, W.; Yu, J.; Bai, Y.; Sreeram, A.; Hu, J. Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber. Engineering 2021, 7, 857–867. [Google Scholar] [CrossRef]
- Hınıslıoğlu, S.; Ağar, E. Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Mater. Lett. 2004, 58, 267–271. [Google Scholar] [CrossRef]
- Ho, S.; Church, R.; Klassen, K.; Law, B.; MacLeod, D.; Zanzotto, L. Study of recycled polyethylene materials as asphalt modifiers. Can. J. Civ. Eng. 2006, 33, 968–981. [Google Scholar] [CrossRef]
- Costa, L.M.; Silva, H.; Oliveira, J.R.; Fernandes, S.R. Incorporation of waste plastic in asphalt binders to improve their performance in the pavement. Int. J. Pavement Res. Technol. 2013, 6, 457–464. [Google Scholar]
- Costa, L.; Fernandes, S.; Silva, H.; Oliveira, J. Study of the interaction between asphalt and recycled plastics in new polymer modified binders (PMB). Ciência Tecnol. Dos Mater. 2017, 29, e192–e197. [Google Scholar] [CrossRef]
- Köfteci, S. Effect of HDPE based wastes on the performance of modified asphalt mixtures. Procedia Eng. 2016, 161, 1268–1274. [Google Scholar] [CrossRef] [Green Version]
- Martin-Alfonso, J.; Cuadri, A.; Torres, J.; Hidalgo, M.; Partal, P. Use of plastic wastes from greenhouse in asphalt mixes manufactured by dry process. Road Mater. Pavement Des. 2019, 20, S265–S281. [Google Scholar] [CrossRef]
- Abed, A.H.; Bahia, H.U. Enhancement of permanent deformation resistance of modified asphalt concrete mixtures with nano-high density polyethylene. Constr. Build. Mater. 2020, 236, 117604. [Google Scholar] [CrossRef]
- Khurshid, M.B.; Qureshi, N.A.; Hussain, A.; Iqbal, M.J. Enhancement of hot mix asphalt (HMA) properties using waste polymers. Arab. J. Sci. Eng. 2019, 44, 8239–8248. [Google Scholar] [CrossRef]
- Mansourian, A.; Goahri, A.R.; Khosrowshahi, F.K. Performance evaluation of asphalt binder modified with EVA/HDPE/nanoclay based on linear and non-linear viscoelastic behaviors. Constr. Build. Mater. 2019, 208, 554–563. [Google Scholar] [CrossRef]
- Fang, C.; Liu, P.; Yu, R.; Liu, X. Preparation process to affect stability in waste polyethylene-modified bitumen. Constr. Build. Mater. 2014, 54, 320–325. [Google Scholar] [CrossRef]
- Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt modification with different polyethylene-based polymers. Eur. Polym. J. 2005, 41, 2831–2844. [Google Scholar] [CrossRef]
- Giavarini, C.; De Filippis, P.; Santarelli, M.L.; Scarsella, M. Production of stable polypropylene-modified bitumens. Fuel 1996, 75, 681–686. [Google Scholar]
- Li, H.; Feng, Z.; Ahmed, A.T.; Yombah, M.; Cui, C.; Zhao, G.; Guo, P.; Sheng, Y. Repurposing waste oils into cleaner aged asphalt pavement materials: A critical review. J. Clean. Prod. 2022, 334, 130230. [Google Scholar] [CrossRef]
- Arabani, M.; Pedram, M. Laboratory investigation of rutting and fatigue in glassphalt containing waste plastic bottles. Constr. Build. Mater. 2016, 116, 378–383. [Google Scholar] [CrossRef]
- Chin, C.; Damen, P. Viability of Using Recycled Plastics in Asphalt and Sprayed Sealing Applications; Austroads Ltd.: Sydney, NSW, Australia, 2019; p. 1925854515. [Google Scholar]
- Melbouci, B.; Sadoun, S.; Bilek, A. Study of strengthening of recycled asphalt concrete by plastic aggregates. Int. J. Pavement Res. Technol. 2014, 7, 280. [Google Scholar]
- Abtahi, S.M.; Esfandiarpour, S.; Kunt, M.; Hejazi, S.M.; Ebrahimi, M.G. Hybrid reinforcement of asphalt-concrete mixtures using glass and polypropylene fibers. J. Eng. Fibers Fabr. 2013, 8, 155892501300800203. [Google Scholar] [CrossRef] [Green Version]
- Liang, M.; Su, L.; Li, P.; Shi, J.; Yao, Z.; Zhang, J.; Jiang, H.; Luo, W. Investigating the rheological properties of carbon nanotubes/polymer composites modified asphalt. Materials 2020, 13, 4077. [Google Scholar] [CrossRef]
Test | Unit | Measured Value | Specification Requirement | |
---|---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 85 | 80~100 | |
Ductility (5 cm/min, 15 °C) | cm | >100 | >100 | |
Softening point | °C | 48.3 | >45 | |
Density (15 °C) | g/cm3 | 1.030 | ||
Aging (TFOT) test (163 °C, 5 h) | Quality change | % | 0.120 | ≤±0.8 |
Residual penetration | % | 73.6 | ≥57 | |
Residual ductility | cm | 11.7 | ≥8 |
Density/g·cm−3 | Melting Point/°C | Melt Rate/g·10 min−1 | Elongation Break Rate/% |
---|---|---|---|
0.91~0.92 | 43 | 0.2~5.0 | 20~800 |
Density/g·cm−3 | Melting Point/°C | Elongation Break Rate/% |
---|---|---|
0.90~0.91 | 135~159 | 150~600 |
Tests | Shearing Time/min | Shearing Temperature/°C | Shearing Rate/r·min−1 |
---|---|---|---|
l | 30 | 170 | 3000 |
2 | 30 | 180 | 4000 |
3 | 30 | 190 | 5000 |
4 | 60 | 170 | 4000 |
5 | 60 | 180 | 5000 |
6 | 60 | 190 | 3000 |
7 | 90 | 170 | 5000 |
8 | 90 | 180 | 3000 |
9 | 90 | 190 | 4000 |
Factor | Softening Point/ °C | 25 °C Penetration/0.1 mm | 135 °C Viscosity/Pa·s |
---|---|---|---|
Test l | 65.1 | 47.0 | 0.618 |
Test 2 | 61.9 | 47.3 | 0.609 |
Test 3 | 63.6 | 46.4 | 0.628 |
Test 4 | 63.3 | 47.5 | 0.606 |
Test 5 | 62.9 | 47.3 | 0.612 |
Test 6 | 62.6 | 48.4 | 0.600 |
Test 7 | 62.5 | 47.2 | 0.617 |
Test 8 | 61.6 | 49.3 | 0.594 |
Test 9 | 63.1 | 47.4 | 0.609 |
Factor | Shear Time/min | Shear Temperature/°C | Shear Rate/r·min−1 | Softening Point/°C |
---|---|---|---|---|
Test l | 30 | 170 | 3000 | 65.1 |
Test 2 | 30 | 180 | 4000 | 61.9 |
Test 3 | 30 | 190 | 5000 | 63.5 |
Test 4 | 60 | 170 | 4000 | 63.3 |
Test 5 | 60 | 180 | 5000 | 62.9 |
Test 6 | 60 | 190 | 3000 | 62.6 |
Test 7 | 90 | 170 | 5000 | 62.5 |
Test 8 | 90 | 180 | 3000 | 61.6 |
Test 9 | 90 | 190 | 4000 | 63.1 |
K1 | 190.5 | 190.9 | 189.3 | / |
K2 | 188.8 | 186.4 | 188.3 | / |
K3 | 187.2 | 189.2 | 188.9 | / |
R | 3.3 | 4.5 | 1.0 | / |
Factor | Shear Time/min | Shear Temperature/°C | Shear Rate/r·min−1 | 25 °C Penetration/0.1 mm |
---|---|---|---|---|
Test l | 30 | 170 | 3000 | 47.0 |
Test 2 | 30 | 180 | 4000 | 47.3 |
Test 3 | 30 | 190 | 5000 | 46.4 |
Test 4 | 60 | 170 | 4000 | 47.5 |
Test 5 | 60 | 180 | 5000 | 47.3 |
Test 6 | 60 | 190 | 3000 | 48.4 |
Test 7 | 90 | 170 | 5000 | 47.2 |
Test 8 | 90 | 180 | 3000 | 49.3 |
Test 9 | 90 | 190 | 4000 | 47.4 |
K1 | 140.1 | 141.7 | 144.7 | / |
K2 | 143.2 | 143.9 | 142.2 | / |
K3 | 143.9 | 142.2 | 140.9 | / |
R | 3.8 | 2.2 | 3.9 | / |
Factor | Shear Time/min | Shear Temperature/°C | Shear Rate/r·min−1 | 135 °C Viscosity/Pa·s |
---|---|---|---|---|
Test l | 30 | 170 | 3000 | 0.618 |
Test 2 | 30 | 180 | 4000 | 0.609 |
Test 3 | 30 | 190 | 5000 | 0.628 |
Test 4 | 60 | 170 | 4000 | 0.606 |
Test 5 | 60 | 180 | 5000 | 0.612 |
Test 6 | 60 | 190 | 3000 | 0.600 |
Test 7 | 90 | 170 | 5000 | 0.617 |
Test 8 | 90 | 180 | 3000 | 0.594 |
Test 9 | 90 | 190 | 4000 | 0.609 |
K1 | 1.855 | 1.814 | 1.812 | / |
K2 | 1.818 | 1.815 | 1.823 | / |
K3 | 1.820 | 1.827 | 1.857 | / |
R | 0.037 | 0.012 | 0.045 | / |
Factor | Softening Point/°C | 25 °C Penetration/0.1 mm | 135 °C Viscosity/Pa·s |
---|---|---|---|
Test l | 63.4 | 54.5 | 0.670 |
Test 2 | 61.6 | 52.3 | 0.679 |
Test 3 | 60.9 | 51.8 | 0.682 |
Test 4 | 62.6 | 51.6 | 0.684 |
Test 5 | 61.4 | 51.4 | 0.687 |
Test 6 | 60.8 | 51.3 | 0.687 |
Test 7 | 62.0 | 52.5 | 0.676 |
Test 8 | 61.2 | 51.0 | 0.690 |
Test 9 | 60.6 | 51.5 | 0.685 |
Factor | Shear Time/min | Shear Temperature/°C | Shear Rate/r·min−1 | Softening Point/°C |
---|---|---|---|---|
Test l | 30 | 170 | 3000 | 63.4 |
Test 2 | 30 | 180 | 4000 | 61.6 |
Test 3 | 30 | 190 | 5000 | 60.9 |
Test 4 | 60 | 170 | 4000 | 62.6 |
Test 5 | 60 | 180 | 5000 | 61.4 |
Test 6 | 60 | 190 | 3000 | 60.8 |
Test 7 | 90 | 170 | 5000 | 62.0 |
Test 8 | 90 | 180 | 3000 | 61.2 |
Test 9 | 90 | 190 | 4000 | 60.6 |
K1 | 185.9 | 188.0 | 185.4 | / |
K2 | 184.8 | 184.2 | 184.8 | / |
K3 | 183.8 | 182.3 | 184.3 | / |
R | 0.7 | 1.9 | 0.37 | / |
Factor | Shear Time/min | Shear Temperature/°C | Shear Rate/r·min−1 | 25 °C Penetration/0.1 mm |
---|---|---|---|---|
Test l | 30 | 170 | 3000 | 54.5 |
Test 2 | 30 | 180 | 4000 | 52.3 |
Test 3 | 30 | 190 | 5000 | 51.8 |
Test 4 | 60 | 170 | 4000 | 51.6 |
Test 5 | 60 | 180 | 5000 | 51.4 |
Test 6 | 60 | 190 | 3000 | 51.3 |
Test 7 | 90 | 170 | 5000 | 52.5 |
Test 8 | 90 | 180 | 3000 | 51.0 |
Test 9 | 90 | 190 | 4000 | 51.5 |
K1 | 158.4 | 158.6 | 156.8 | / |
K2 | 154.3 | 154.7 | 155.4 | / |
K3 | 155.0 | 154.6 | 155.7 | / |
R | 4.1 | 4.0 | 1.4 | / |
Factor | Shear Time/min | Shear Temperature/°C | Shear Rate/r·min−1 | 135 °C Viscosity/Pa·s |
---|---|---|---|---|
Test l | 30 | 170 | 3000 | 0.670 |
Test 2 | 30 | 180 | 4000 | 0.679 |
Test 3 | 30 | 190 | 5000 | 0.682 |
Test 4 | 60 | 170 | 4000 | 0.684 |
Test 5 | 60 | 180 | 5000 | 0.687 |
Test 6 | 60 | 190 | 3000 | 0.687 |
Test 7 | 90 | 170 | 5000 | 0.676 |
Test 8 | 90 | 180 | 3000 | 0.690 |
Test 9 | 90 | 190 | 4000 | 0.685 |
K1 | 2.031 | 2.030 | 2.047 | / |
K2 | 2.028 | 2.056 | 2.048 | / |
K3 | 2.051 | 2.054 | 2.045 | / |
R | 0.023 | 0.026 | 0.003 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhou, L.; Sun, J.; Wang, S.; Zhang, M.; Hu, Y.; Temitope, A.A. Analysis of the Influence of Production Method, Plastic Content on the Basic Performance of Waste Plastic Modified Asphalt. Polymers 2022, 14, 4350. https://doi.org/10.3390/polym14204350
Li H, Zhou L, Sun J, Wang S, Zhang M, Hu Y, Temitope AA. Analysis of the Influence of Production Method, Plastic Content on the Basic Performance of Waste Plastic Modified Asphalt. Polymers. 2022; 14(20):4350. https://doi.org/10.3390/polym14204350
Chicago/Turabian StyleLi, Haibin, Lichang Zhou, Jianmei Sun, Sirui Wang, Mingming Zhang, Yihong Hu, and Ahmed Abdulakeem Temitope. 2022. "Analysis of the Influence of Production Method, Plastic Content on the Basic Performance of Waste Plastic Modified Asphalt" Polymers 14, no. 20: 4350. https://doi.org/10.3390/polym14204350
APA StyleLi, H., Zhou, L., Sun, J., Wang, S., Zhang, M., Hu, Y., & Temitope, A. A. (2022). Analysis of the Influence of Production Method, Plastic Content on the Basic Performance of Waste Plastic Modified Asphalt. Polymers, 14(20), 4350. https://doi.org/10.3390/polym14204350