Effect of Microplastics on the Removal of Nitrogen and Phosphorus from Synthetic Piggery Digestate by Microalgae
Multifunctional Polymers Used in Agricultural Application and Environmental Treatment
)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae and Wastewater
2.2. Experimental Design
2.3. Analysis Methods
2.4. Data Analysis
3. Results and Discussion
3.1. Effect of MPs on the Growth of Microalgae
3.2. Effect of MPs on the Removal of NH4-N and TP
3.2.1. Removal of NH4-N
3.2.2. Removal of TP
3.3. Interaction between Microalgae and MPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.F.; Mofijur, M.; Parisa, T.A.; Islam, N.; Kusumo, F.; Inayat, A.; Le, V.G.; Badruddin, I.A.; Khan, T.M.Y.; Ong, H.C. Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere 2022, 286, 131656. [Google Scholar] [CrossRef] [PubMed]
- Silveira, C.F.; de Assis, L.R.; Oliveira, A.P.D.; Calijuri, M.L. Valorization of swine wastewater in a circular economy approach: Effects of hydraulic retention time on microalgae cultivation. Sci. Total Environ. 2021, 789, 147861. [Google Scholar] [CrossRef] [PubMed]
- Calicioglu, O.; Demirer, G.N. Carbon-to-nitrogen and substrate-to-inoculum ratio adjustments can improve co-digestion performance of microalgal biomass obtained from domestic wastewater treatment. Environ. Technol. 2019, 40, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, S.; Yusoff, M.M.; Rahim, M.H.A.; Maniam, G.P.; Govindan, N. The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia. Renew. Sustain. Energy Rev. 2017, 72, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Su, Y. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci. Total Environ. 2021, 762, 144590. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Li, X.; Liu, H.; Wu, S.; Zhou, Q.; Du, C.; Teng, Q.; Zhong, Y.; Yang, C. Sequential vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of decentralized domestic wastewater with sodium dodecyl benzene sulfonate. Bioresour. Technol. 2020, 300, 122634. [Google Scholar] [CrossRef] [PubMed]
- Ellis, L.D.; Rorrer, N.A.; Sullivan, K.P.; Otto, M.; McGeehan, J.E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G.T. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 2021, 4, 539–556. [Google Scholar] [CrossRef]
- Bakaraki Turan, N.; Sari Erkan, H.; Onkal Engin, G. Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Saf. Environ. Prot. 2021, 146, 77–84. [Google Scholar] [CrossRef]
- Green, D.S.; Boots, B.; O’Connor, N.E.; Thompson, R. Microplastics Affect the Ecological Functioning of an Important Biogenic Habitat. Environ. Sci. Technol. 2017, 51, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.D.; Sinclair, M.; Levi, C.J.; Reeves, S.E.; Edgar, G.J. Ubiquity of microplastics in coastal seafloor sediments. Mar. Pollut. Bull. 2017, 121, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Hu, Y.; Zhang, S.; Wu, R.; Guo, X. Microplastics in the surface water of Wuliangsuhai Lake, northern China. Sci. Total Environ. 2020, 723, 137820. [Google Scholar] [CrossRef]
- Prata, J.C.; Lavorante, B.R.; Montenegro, M.D.C.B.; Guilhermino, L. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat. Toxicol. 2018, 197, 143–152. [Google Scholar] [CrossRef]
- Wang, F.; Wang, B.; Duan, L.; Zhang, Y.Z.; Zhou, Y.T.; Sui, Q.; Xu, D.J.; Qu, H.; Yu, G. Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China. Water Res. 2020, 182, 115956. [Google Scholar] [CrossRef]
- Cheng, H.; Tian, G. Identification of a newly isolated microalga from a local pond and evaluation of its growth and nutrients removal potential in swine breeding effluent. Desalin. Water Treat. 2013, 51, 2768–2775. [Google Scholar] [CrossRef]
- Li, X.; Yang, C.P.; Zeng, G.M.; Wu, S.H.; Lin, Y.; Zhou, Q.; Lou, W.; Du, C.; Nie, L.J.; Zhong, Y.Y. Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Res. Biomass Biofuels Bioprod. 2020, 46, 101804. [Google Scholar] [CrossRef]
- Song, C.F.; Liu, Z.Z.; Wang, C.L.; Li, S.H.; Kitamura, Y. Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025. Sci. Total Environ. 2020, 723, 138146. [Google Scholar] [CrossRef]
- Wu, Y.M.; Guo, P.Y.; Zhang, X.Y.; Zhang, Y.X.; Xie, S.T.; Den, J. Effect of microplastics exposure on the photosynthesis system of freshwater algae. J. Hazard. Mater. 2019, 374, 219–227. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Liang, Y.; Cao, W.; Sun, C.; Ju, P.; Zheng, L. The interactions between microplastic polyvinyl chloride and marine diatoms: Physiological, morphological, and growth effects. Ecotoxicol. Environ. Saf. 2020, 203, 111000. [Google Scholar] [CrossRef]
- Schwab, F.; Bucheli, T.D.; Lukhele, L.P.; Magrez, A.; Nowack, B.; Sigg, L.; Knauer, K. Are Carbon Nanotube Effects on Green Algae Caused by Shading and Agglomeration? Environ. Sci. Technol. 2011, 45, 6136–6144. [Google Scholar] [CrossRef]
- Sjollema, S.B.; Redondo-Hasselerharm, P.; Leslie, H.A.; Kraak, M.H.S.; Vethaak, A.D. Do plastic particles affect microalgal photosynthesis and growth? Aquat. Toxicol. 2016, 170, 259–261. [Google Scholar] [CrossRef]
- Xia, B.; Chen, B.J.; Sun, X.M.; Qu, K.M.; Ma, F.F.; Du, M.R. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Sci. Total Environ. 2015, 508, 525–533. [Google Scholar] [CrossRef]
- Canniff, P.M.; Hoang, T.C. Microplastic ingestion by Daphnia magna and its enhancement on algal growth. Sci. Total Environ. 2018, 633, 500–507. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, X.; Wang, J.; Tan, L. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae. Environ. Pollut. 2017, 220, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Powell, B.A.; Mortimer, M.; Ke, P.C. Adaptive Interactions between Zinc Oxide Nanoparticles and Chlorella sp. Environ. Sci. Technol. 2012, 46, 12178–12185. [Google Scholar] [CrossRef]
- Huang, W.; Zhao, T.; Zhu, X.; Ni, Z.; Guo, X.; Tan, L.; Wang, J. The effects and mechanisms of polystyrene and polymethyl methacrylate with different sizes and concentrations on Gymnodinium aeruginosum. Environ. Pollut. 2021, 287, 117626. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.H.; Luo, Y.T.; He, J.Y.; Sun, L.J.; Long, B.B.; Liu, Q.L.; Yuan, X.F.; Dai, P.B.; Shi, J.Y. Investigation of lead bioimmobilization and transformation by Penicillium oxalicum SL2. Bioresour. Technol. 2018, 264, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Yang, Y.; Wang, P.; Wang, C.; Miao, L.; Wang, X.; Lv, B.; You, G.; Liu, Z. Effects of CeO2, CuO, and ZnO nanoparticles on physiological features of Microcystis aeruginosa and the production and composition of extracellular polymeric substances. Environ. Sci. Pollut. Res. Int. 2017, 24, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wang, J.; Chen, M. Three-dimensional fluorescence characteristics of dissolved organic matter produced by Prorocentrum donghaiense Lu. Chin. J. Oceanol. Limnol. 2009, 27, 564–569. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Luo, L.; Mao, Z.; Wang, H.; Chu, S.; Wang, H.; Luo, S. Effect of Microplastics on the Removal of Nitrogen and Phosphorus from Synthetic Piggery Digestate by Microalgae. Polymers 2022, 14, 4349. https://doi.org/10.3390/polym14204349
Lin X, Luo L, Mao Z, Wang H, Chu S, Wang H, Luo S. Effect of Microplastics on the Removal of Nitrogen and Phosphorus from Synthetic Piggery Digestate by Microalgae. Polymers. 2022; 14(20):4349. https://doi.org/10.3390/polym14204349
Chicago/Turabian StyleLin, Xiaoai, Longzao Luo, Zhitong Mao, Huimin Wang, Shiyu Chu, Hui Wang, and Shuang Luo. 2022. "Effect of Microplastics on the Removal of Nitrogen and Phosphorus from Synthetic Piggery Digestate by Microalgae" Polymers 14, no. 20: 4349. https://doi.org/10.3390/polym14204349
APA StyleLin, X., Luo, L., Mao, Z., Wang, H., Chu, S., Wang, H., & Luo, S. (2022). Effect of Microplastics on the Removal of Nitrogen and Phosphorus from Synthetic Piggery Digestate by Microalgae. Polymers, 14(20), 4349. https://doi.org/10.3390/polym14204349