Preparation and Physiochemical Characterization of Bitter Orange Oil Loaded Sodium Alginate and Casein Based Edible Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Casein–Sodium Alginate–Orange Essential Oil (CA–SA–OEO) Loaded Films
2.2. Thickness
2.3. Mechanical Properties
2.4. Puncture Strength
2.5. Water Vapor Permeability
2.6. Oxygen Gas Transmission Assessment
2.7. Moisture Content
2.8. Water Solubility (WS)
2.9. Transparency
2.10. X-ray Diffraction (XRD) Studies
2.11. Microscope Observations
2.12. FTIR Spectra Analysis
2.13. Thermogravimetric (TGA) Analysis
2.14. Statistical Analysis
3. Results and Discussion
3.1. Visual Assessment
3.2. Mechanical Characteristics
3.3. Puncture Strength
3.4. X-ray Diffraction (XRD)
3.5. FTIR Analysis
3.6. Thermogravimetric Analysis
3.7. Microstructure of CA–SA and OEO–CA–SA Films
3.8. Film Thickness
3.9. Swelling Degree
3.10. Water Vapor Permeability and Water Solubility
3.11. Oxygen Barrier Property
3.12. Moisture Content
3.13. Transparency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef]
- Khwaldia, K.; Banon, S.; Perez, C.; Desobry, S. Properties of sodium caseinate film-forming dispersions and films. J. Dairy Sci. 2004, 87, 2011–2016. [Google Scholar] [CrossRef]
- Embuscado, M.E.; Huber, K.C. Edible Films and Coatings for Food Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Schmid, M.; Zillinger, W.; Müller, K.; Sängerlaub, S. Permeation of water vapour, nitrogen, oxygen and carbon dioxide through whey protein isolate based films and coatings—Permselectivity and activation energy. Food Packag. Shelf Life 2015, 6, 21–29. [Google Scholar] [CrossRef]
- Guilbert, S. Technology and application of edible protective films. Packag. Technol. Sci. 1986, 9, 37. [Google Scholar] [CrossRef]
- Al-Harrasi, A.; Bhtaia, S.; Al-Azri, M.S.; Makeen, H.A.; Albratty, M.; Alhazmi, H.A.; Mohan, S.; Sharma, A.; Behl, T. Development and characterization of chitosan and porphyran based composite edible films containing ginger essential oil. Polymers 2022, 14, 1782. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Avena-Bustillos, R.J.; Olsen, C.; Friedman, M.; Henika, P.R.; Martín-Belloso, O.; Pan, Z.; McHugh, T.H. Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate-apple puree edible films. J. Food Eng. 2007, 81, 634–641. [Google Scholar] [CrossRef]
- Seydim, A.; Sarikus, G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int. 2006, 39, 639–644. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Preservation of aquatic food using edible films and coatings containing essential oils: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 66–105. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Avena-Bustillos, R.J.; Friedman, M.; Henika, P.R.; Martín-Belloso, O.; McHugh, T.H. Mechanical, barrier, and antimicrobial properties of apple puree edible films containing plant essential oils. J. Agric. Food Chem. 2006, 54, 9262–9267. [Google Scholar] [CrossRef]
- Suhag, R.; Kumar, N.; Petkoska, A.T.; Upadhyay, A. Film formation and deposition methods of edible coating on food products: A review. Food Res. Int. 2020, 136, 109582. [Google Scholar] [CrossRef]
- Campbell, J.; Vikulina, A.S. Layer-by-layer assemblies of biopolymers: Build-up, mechanical stability and molecular dynamics. Polymers 2020, 12, 1949. [Google Scholar] [CrossRef] [PubMed]
- Wittaya, T. Protein-based edible films: Characteristics and improvement of properties. Struct. Funct. Food Eng. 2012, 3, 44–70. [Google Scholar]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef]
- Pan, H.M.; Subramanian, A.; Ochs, C.J.; Dewavrin, J.-Y.; Beyer, S.; Trau, D.W. Edible polyelectrolyte microcapsules with water-soluble cargo assembled in organic phase. RSC Adv. 2014, 4, 35163–35166. [Google Scholar] [CrossRef]
- Ramos, M.; Valdés, A.; Beltran, A.; Garrigós, M.C. Gelatin-based films and coatings for food packaging applications. Coatings 2016, 6, 41. [Google Scholar] [CrossRef]
- Picchio, M.L.; Linck, Y.G.; Monti, G.A.; Gugliotta, L.M.; Minari, R.J.; Igarzabal, C.I.A. Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocoll. 2018, 84, 424–434. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, S.; Gunasekaran, S. Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J. Food Sci. 2009, 74, N50–N56. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Cheng, Y.; Wang, C.; Liu, H.; Bian, H.; Pan, Y.; Sun, J.; Han, W. Application of protein-based films and coatings for food packaging: A review. Polymers 2019, 11, 2039. [Google Scholar] [CrossRef]
- Bonnaillie, L.M.; Zhang, H.; Akkurt, S.; Yam, K.L.; Tomasula, P.M. Casein films: The effects of formulation, environmental conditions and the addition of citric pectin on the structure and mechanical properties. Polymers 2014, 6, 2018–2036. [Google Scholar] [CrossRef]
- Bora, A.; Mishra, P. Characterization of casein and casein-silver conjugated nanoparticle containing multifunctional (pectin–sodium alginate/casein) bilayer film. J. Food Sci. Technol. 2016, 53, 3704–3714. [Google Scholar] [CrossRef]
- Bajpai, S.; Shah, F.; Bajpai, M.; Jadaun, M.; Jyotish, P. Dynamic release of amoxicillin from orally dissolving film (ODF) composed of casein and sodium alginate. J. Drug Res. Dev. 2017, 3, 2470-1009. [Google Scholar]
- Kačániová, M.; Terentjeva, M.; Galovičová, L.; Ivanišová, E.; Štefániková, J.; Valková, V.; Borotová, P.; Kowalczewski, P.Ł.; Kunová, S.; Felšöciová, S.; et al. Biological activity and antibiofilm molecular profile of Citrus aurantium essential oil and its application in a food model. Molecules 2020, 25, 3956. [Google Scholar] [CrossRef]
- ASTM International. Annual Book of American Standard Testing Methods; ASTM: Philadelphia, PA, USA, 1997. [Google Scholar]
- ASTM International. Standard test method for tensile properties of thin plastic sheeting. In Annual Book of ASTM Standards; ASTM: Philadelphia, PA, USA, 1995; Volume 8, pp. 182–190. [Google Scholar]
- Kittipongpatana, O.S.; Trisopon, K.; Wattanaarsakit, P.; Kittipongpatana, N. Fabrication and characterization of orodispersible composite film from hydroxypropylmethyl cellulose-crosslinked carboxymethyl rice starch. Membranes 2022, 12, 594. [Google Scholar] [CrossRef] [PubMed]
- Lagos, J.B.; Vicentini, N.M.; Santos, R.M.D.; Bittante, A.M.Q.; Sobral, P.J. Mechanical properties of cassava starch films as affected by different plasticizers and different relative humidity conditions. Int. J. Food Stud. 2015, 4, 116–125. [Google Scholar] [CrossRef]
- Kurt, A.; Kahyaoglu, T. Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydr. Polym. 2014, 104, 50–58. [Google Scholar] [CrossRef]
- Singh, T.P.; Chatli, M.K.; Sahoo, J. Development of chitosan based edible films: Process optimization using response surface methodology. J. Food Sci. Technol. 2015, 52, 2530–2543. [Google Scholar] [CrossRef]
- Shiku, Y.; Hamaguchi, P.Y.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Effect of surimi quality on properties of edible films based on Alaska pollack. Food Chem. 2004, 86, 493–499. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.; Zhang, C.; Show, P.L.; Du, A.; Fu, J.; Ashokkumar, V. Preparation and characterization of curdlan/polyvinyl alcohol/thyme essential oil blending film and its application to chilled meat preservation. Carbohydr. Polym. 2020, 247, 116670. [Google Scholar] [CrossRef]
- Jiang, L.; Han, Y.; Meng, X.; Xiao, Y.; Zhang, H. Cellulose nanocrystals reinforced zein/catechin/β-cyclodextrin inclusion complex nanoparticles nanocomposite film for active food packaging. Polymers 2021, 13, 2759. [Google Scholar] [CrossRef]
- Galus, S.; Lenart, A. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Eng. 2013, 115, 459–465. [Google Scholar] [CrossRef]
- Saberi, B.; Vuong, Q.V.; Chockchaisawasdee, S.; Golding, J.B.; Scarlett, C.J.; Stathopoulos, C.E. Physical, barrier, and antioxidant properties of pea starch-guar gum biocomposite edible films by incorporation of natural plant extracts. Food Bioprocess Technol. 2017, 10, 2240–2250. [Google Scholar] [CrossRef]
- Yang, L.; Paulson, A. Mechanical and water vapour barrier properties of edible gellan films. Food Res. Int. 2000, 33, 563–570. [Google Scholar] [CrossRef]
- Sobral, P.D.A.; Menegalli, F.; Hubinger, M.; Roques, M. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocoll. 2001, 15, 423–432. [Google Scholar] [CrossRef]
- Murthy, N.; Minor, H. General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers. Polymer 1990, 31, 996–1002. [Google Scholar] [CrossRef]
- Siriprom, W.; Kuha, P.; Kongsriprapan, S.; Teanchai, K. Studying methylcellulose-base edible films properties by XRD, EDXRF and FTIR. Adv. Mater. Res. 2014, 979, 319–322. [Google Scholar] [CrossRef]
- Biranje, S.; Madiwale, P.; Adivarekar, R. Porous electrospun Casein/PVA nanofibrous mat for its potential application as wound dressing material. J. Porous Mater. 2019, 26, 29–40. [Google Scholar] [CrossRef]
- Namratha, S.; Sreejit, V.; Preetha, R. Fabrication and evaluation of physicochemical properties of probiotic edible film based on pectin–alginate–casein composite. Int. J. Food Sci. Technol. 2020, 55, 1497–1505. [Google Scholar] [CrossRef]
- Silva, C.F.d.; Oliveira, F.S.M.d.; Caetano, V.F.; Vinhas, G.M.; Cardoso, S.A. Orange essential oil as antimicrobial additives in poly(vinyl chloride) films. Polímeros 2018, 28, 332–338. [Google Scholar] [CrossRef]
- Siročić, A.P.; Krehula, L.K.; Katančić, Z.; Hrnjak-Murgić, Z. Characterization of casein fractions—Comparison of commercial casein and casein extracted from cow’s milk. Chem. Biochem. Eng. Q. 2016, 30, 501–509. [Google Scholar] [CrossRef]
- Xu, J.; Fan, Z.; Duan, L.; Gao, G. A tough, stretchable, and extensively sticky hydrogel driven by milk protein. Polym. Chem. 2018, 9, 2617–2624. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll. 2015, 47, 168–177. [Google Scholar] [CrossRef]
- Haghighi, H.; Biard, S.; Bigi, F.; de Leo, R.; Bedin, E.; Pfeifer, F.; Siesler, H.W.; Licciardello, F.; Pulvirenti, A. Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocoll. 2019, 95, 33–42. [Google Scholar] [CrossRef]
- Song, X.; Zuo, G.; Chen, F. Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. Int. J. Biol. Macromol. 2018, 107, 1302–1309. [Google Scholar] [CrossRef]
- Ahmed, J.; Hiremath, N.; Jacob, H. Antimicrobial, rheological, and thermal properties of plasticized polylactide films incorporated with essential oils to inhibit Staphylococcus aureus and Campylobacter jejuni. J. Food Sci. 2016, 81, E419–E429. [Google Scholar] [CrossRef]
- Cai, C.; Ma, R.; Duan, M.; Deng, Y.; Liu, T.; Lu, D. Effect of starch film containing thyme essential oil microcapsules on physicochemical activity of mango. LWT 2020, 131, 109700. [Google Scholar] [CrossRef]
- Socaciu, M.-I.; Fogarasi, M.; Semeniuc, C.A.; Socaci, S.A.; Rotar, M.A.; Mureşan, V.; Pop, O.L.; Vodnar, D.C. Formulation and characterization of antimicrobial edible films based on whey protein isolate and tarragon essential oil. Polymers 2020, 12, 1748. [Google Scholar] [CrossRef]
- Al-Hashimi, A.G.; Ammar, A.B.; Cacciola, F.; Lakhssassi, N. Development of a millet starch edible film containing clove essential oil. Foods 2020, 9, 184. [Google Scholar] [CrossRef]
- Monteiro, M.K.S.; Oliveira, V.R.L.d.; Santos, F.K.G.d.; Neto, E.B.; Leite, R.H.d.L.; Aroucha, E.M.M.; Silva, R.R.; Silva, K.N.D.O. Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability. Food Res. Int. 2018, 105, 637–644. [Google Scholar] [CrossRef]
- Valizadeh, S.; Naseri, M.; Babaei, S.; Hosseini, S.M.H.; Imani, A. Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid. Int. J. Biol. Macromol. 2019, 134, 604–612. [Google Scholar] [CrossRef]
- Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocoll. 2012, 26, 9–16. [Google Scholar] [CrossRef]
- Sothornvit, R.; Pitak, N. Oxygen permeability and mechanical properties of banana films. Food Res. Int. 2007, 40, 365–370. [Google Scholar] [CrossRef]
- Tomasula, P.M.; Yee, W.C.; Parris, N. Oxygen permeability of films made from CO2-precipitated casein and modified casein. J. Agric. Food Chem. 2003, 51, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Chick, J.; Ustunol, Z. Mechanical and barrier properties of lactic acid and rennet precipitated casein-based edible films. J. Food Sci. 1998, 63, 1024–1027. [Google Scholar] [CrossRef]
- Wagh, Y.; Pushpadass, H.A.; Emerald, F.; Nath, B.S. Preparation and characterization of milk protein films and their application for packaging of cheddar cheese. J. Food Sci. Technol. 2014, 51, 3767–3775. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Rodríguez, M.C.; Ortega-Toro, R. Effect of different essential oils on the properties of edible coatings based on yam (Dioscorea rotundata L.) starch and its application in strawberry (Fragaria vesca L.) preservation. Appl. Sci. 2021, 11, 11057. [Google Scholar] [CrossRef]
- Hosseini, S.; Razavi, S.; Mousavi, S. Studies on physical, mechanical, antibacterial and microstructural properties of chitosan edible films containing thyme and cinnamon essential oils. Food Process. Preserv. J. 2010, 33, 727–743. [Google Scholar] [CrossRef]
- Pirouzifard, M.; Yorghanlu, R.A.; Pirsa, S. Production of active film based on potato starch containing Zedo gum and essential oil of Salvia officinalis and study of physical, mechanical, and antioxidant properties. J. Thermoplast. Compos. Mater. 2020, 33, 915–937. [Google Scholar] [CrossRef]
Codes | Film Composition |
---|---|
FL1 | CA+SA |
FL2 | CA + SA + OEO (1.5% v/v) |
FL3 | CA + SA + OEO (2% v/v) |
FL4 | CA + SA + OEO (2.5% v/v) |
Sample Codes | EAB (%) | TS (MPa) | Ym | PF (N) | PD (%) |
---|---|---|---|---|---|
FL1 | 7.21 ± 0.12 c | 8.21 ± 0.02 a | 98.34 ± 3.14 a | 4.87 ± 0.07 b | 78.21 ± 3.78 a |
FL2 | 19.22 ± 1.37 b | 6.22 ± 0.01 b | 45.13 ± 1.77 b | 6.71 ± 0.01 a | 23.89 ± 1.31 c |
FL3 | 20.11 ± 0.78 a | 5.42 ± 0.04 c | 43.17 ± 2.36 b | 4.82 ± 0.02 b | 54.32 ± 0.67 b |
FL4 | 20.32 ± 0.63 a | 4.91 ± 0.03 d | 42.21 ± 4.15 b | 3.77 ± 0.18 c | 75.62 ± 2.24 a |
Sample Codes | Thickness (μm) | SD (%) | WS (%) | WVP (×10−12 g·cm/cm2·s·Pa) | OP (g/100 g) | MC (%) | T |
---|---|---|---|---|---|---|---|
FL1 | 42.01 ± 2.4 c | 77.1 ± 3.71 d | 74 ± 2.14 a | 2.71 ± 0.01 a | 1.89 ± 0.1 c | 16.12 ± 0.61 a | 56.38 ± 2.38 a |
FL2 | 46.32 ± 1.7 c | 81.2 ± 2.78 c | 32 ± 1.56 b | 1.27 ± 0.03 b | 1.45 ± 0.3 c | 10.21 ± 0.34 b | 31.23 ± 1.02 b |
FL3 | 63.91 ± 2.6 b | 132.4 ± 1.86 b | 28 ± 2.33 c | 1.58 ± 0.01 b | 2.54 ± 0.1 b | 9.63 ± 0.72 c | 21.08 ± 1.33 c |
FL4 | 81.87 ± 3.1 a | 139.1 ± 3.41 a | 29 ± 1.42 c | 2.25 ± 0.04 a | 3.81 ± 0.2 a | 9.55 ± 0.24 c | 18.11 ± 1.89 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatia, S.; Al-Harrasi, A.; Al-Azri, M.S.; Ullah, S.; Bekhit, A.E.-D.A.; Pratap-Singh, A.; Chatli, M.K.; Anwer, M.K.; Aldawsari, M.F. Preparation and Physiochemical Characterization of Bitter Orange Oil Loaded Sodium Alginate and Casein Based Edible Films. Polymers 2022, 14, 3855. https://doi.org/10.3390/polym14183855
Bhatia S, Al-Harrasi A, Al-Azri MS, Ullah S, Bekhit AE-DA, Pratap-Singh A, Chatli MK, Anwer MK, Aldawsari MF. Preparation and Physiochemical Characterization of Bitter Orange Oil Loaded Sodium Alginate and Casein Based Edible Films. Polymers. 2022; 14(18):3855. https://doi.org/10.3390/polym14183855
Chicago/Turabian StyleBhatia, Saurabh, Ahmed Al-Harrasi, Mohammed Said Al-Azri, Sana Ullah, Alaa El-Din Ahmed Bekhit, Anubhav Pratap-Singh, Manish Kumar Chatli, Md. Khalid Anwer, and Mohammed F. Aldawsari. 2022. "Preparation and Physiochemical Characterization of Bitter Orange Oil Loaded Sodium Alginate and Casein Based Edible Films" Polymers 14, no. 18: 3855. https://doi.org/10.3390/polym14183855
APA StyleBhatia, S., Al-Harrasi, A., Al-Azri, M. S., Ullah, S., Bekhit, A. E. -D. A., Pratap-Singh, A., Chatli, M. K., Anwer, M. K., & Aldawsari, M. F. (2022). Preparation and Physiochemical Characterization of Bitter Orange Oil Loaded Sodium Alginate and Casein Based Edible Films. Polymers, 14(18), 3855. https://doi.org/10.3390/polym14183855