Gallic Acid Crosslinked Gelatin and Casein Based Composite Films for Food Packaging Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples Preparation
2.3. Thickness
2.4. Scanning Electron Microscopy (SEM)
2.5. Thermal Stability Assessment
2.6. FTIR Spectra Analysis
2.7. X-ray Diffraction (XRD) Study
2.8. Color Analysis of the EFs
2.9. Mechanical Testing
2.10. Water Vapor Permeability (WVP)
2.11. Swelling Degree (SD) and Water Solubility (WS)
2.12. Moisture Content (MC)
2.13. Statistical Analysis
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM) Analysis
3.2. Film Thickness
3.3. Swelling Degree
3.4. WVP of the Edible Films
3.5. Moisture Content and Solubility
3.6. Mechanical Assesment
3.7. Color Parameter
3.8. Transparency
3.9. Fourier-Transform Infrared Spectroscopy (FTIR)
3.10. Thermogravimetric Analysis (TGA)
3.11. X-ray Diffraction (XRD) Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gross, R.A.; Kalra, B. Biodegradable polymers for the environment. Science 2002, 297, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, J.; Sobral, P.J. Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Biosci. 2016, 16, 17–25. [Google Scholar] [CrossRef]
- Wittaya, T. Protein-based edible films: Characteristics and improvement of properties. Struct. Funct. Food Eng. 2012, 3, 44–70. [Google Scholar]
- Azmin, S.N.H.M.; Hayat, N.A.B.M.; Nor, M.S.M. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J. Bioresour. Bioprod. 2020, 5, 248–255. [Google Scholar] [CrossRef]
- Zhao, L.; Duan, G.; Zhang, G.; Yang, H.; He, S.; Jiang, S. Electrospun Functional Materials toward Food Packaging Applications: A Review. Nanomaterials 2020, 10, 150. [Google Scholar] [CrossRef]
- Bizymis, A.-P.; Tzia, C. Edible films and coatings: Properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit. Rev. Food Sci. Nutr. 2021, 1–16. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Osako, K.; Benjakul, S.; Tongdeesoontorn, W.; Rawdkuen, S. Biodegradable protein-based films and their properties: A comparative study. Packag. Technol. Sci. 2016, 29, 77–90. [Google Scholar] [CrossRef]
- Bourtoom, T. Edible protein films: Properties enhancement. Int. Food Res. J. 2009, 16, 1–9. [Google Scholar]
- Chen, H.; Wang, J.; Cheng, Y.; Wang, C.; Liu, H.; Bian, H.; Pan, Y.; Sun, J.; Han, W. Application of protein-based films and coatings for food packaging: A review. Polymers 2019, 11, 2039. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Protein-based films: Advances in the development of biomaterials applicable to food packaging. Food Eng. Rev. 2019, 11, 78–92. [Google Scholar] [CrossRef]
- Sobral, P.d.A.; Menegalli, F.; Hubinger, M.; Roques, M. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocoll. 2001, 15, 423–432. [Google Scholar] [CrossRef]
- Kazachenko, A.; Vasilyeva, N.Y.; Malyar, Y.N.; Slyusareva, E. Synthesis of sulfated starch-casein complex. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Ulaanbaatar, Mongolia, 10–13 September 2020; p. 062013. [Google Scholar]
- Khedri, S.; Sadeghi, E.; Rouhi, M.; Delshadian, Z.; Mortazavian, A.M.; de Toledo Guimarães, J.; Mohammadi, R. Bioactive edible films: Development and characterization of gelatin edible films incorporated with casein phosphopeptides. LWT 2021, 138, 110649. [Google Scholar] [CrossRef]
- Oyeoka, H.C.; Ewulonu, C.M.; Nwuzor, I.C.; Obele, C.M.; Nwabanne, J.T. Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. J. Bioresour. Bioprod. 2021, 6, 168–185. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Gay, J.P.; Karbowiak, T.; Debeaufort, F. Tuning the functional properties of polysaccharide–protein bio-based edible films by chemical, enzymatic, and physical cross-linking. Compr. Rev. Food Sci. Food Saf. 2016, 15, 739–752. [Google Scholar] [CrossRef]
- Choubey, S.; Varughese, L.R.; Kumar, V.; Beniwal, V. Medicinal importance of gallic acid and its ester derivatives: A patent review. Pharm. Pat. Anal. 2015, 4, 305–315. [Google Scholar] [CrossRef]
- Alfei, S.; Oliveri, P.; Malegori, C. Assessment of the Efficiency of a Nanospherical Gallic Acid Dendrimer for Long-Term Preservation of Essential Oils: An Integrated Chemometric-Assisted FTIR Study. ChemistrySelect 2019, 4, 8891–8901. [Google Scholar] [CrossRef]
- Wutticharoenmongkol, P.; Hannirojram, P.; Nuthong, P. Gallic acid-loaded electrospun cellulose acetate nanofibers as potential wound dressing materials. Polym. Adv. Technol. 2019, 30, 1135–1147. [Google Scholar] [CrossRef]
- Wary, R.; Sivaraj, S.; Gurukarthikeyana, R.K.P.; Mari, S.; Suraja, G.D.; Kannayiram, G. Chitosan gallic acid microsphere incorporated collagen matrix for chronic wounds: Biophysical and biochemical characterization. Int. J. Pharm. Pharm. Sci. 2014, 6, 94–100. [Google Scholar]
- Bastos, B.M.; Farias, B.S.; Casati, M.O.; Engelmann, J.I.; Moura, J.M.; Pinto, L.A. Gelatin Films from Carp Skin Crosslinked by Gallic Acid and Incorporated with Chitosan/Tuna Lipid Fractions. J. Polym. Environ. 2021, 29, 2096–2110. [Google Scholar] [CrossRef]
- Guo, L.; Qiang, T.; Ma, Y.; Ren, L.; Zhu, C. Biodegradable anti-ultraviolet film from modified gallic acid crosslinked gelatin. ACS Sustain. Chem. Eng. 2021, 9, 8393–8401. [Google Scholar] [CrossRef]
- Zhang, X.; Do, M.D.; Casey, P.; Sulistio, A.; Qiao, G.G.; Lundin, L.; Lillford, P.; Kosaraju, S. Chemical cross-linking gelatin with natural phenolic compounds as studied by high-resolution NMR spectroscopy. Biomacromolecules 2010, 11, 1125–1132. [Google Scholar] [CrossRef]
- D882–88; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Annual Book of ASTM Standards: Manchester, UK, 2002.
- Zhou, Y.; Wu, X.; Chen, J.; He, J. Effects of cinnamon essential oil on the physical, mechanical, structural and thermal properties of cassava starch-based edible films. Int. J. Biol. Macromol. 2021, 184, 574–583. [Google Scholar] [CrossRef]
- Nouraddini, M.; Esmaiili, M.; Mohtarami, F. Development and characterization of edible films based on eggplant flour and corn starch. Int. J. Biol. Macromol. 2018, 120, 1639–1645. [Google Scholar] [CrossRef]
- Qiu, Y.-T.; Wang, B.-J.; Weng, Y.-M. Preparation and characterization of genipin cross-linked and lysozyme incorporated antimicrobial sodium caseinate edible films. Food Packag. Shelf Life 2020, 26, 100601. [Google Scholar] [CrossRef]
- De Carvalho, R.; Grosso, C. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocoll. 2004, 18, 717–726. [Google Scholar] [CrossRef]
- Liu, F.; Majeed, H.; Antoniou, J.; Li, Y.; Ma, Y.; Yokoyama, W.; Ma, J.; Zhong, F. Tailoring physical properties of transglutaminase-modified gelatin films by varying drying temperature. Food Hydrocoll. 2016, 58, 20–28. [Google Scholar] [CrossRef]
- Sabaghi, M.; Joly, C.; Adt, I.; Ozturk, K.; Cottaz, A.; Degraeve, P. Effect of crosslinking by microbial transglutaminase of gelatin films on lysozyme kinetics of release in food simulants. Food Biosci. 2022, 48, 101816. [Google Scholar] [CrossRef]
- Cao, N.; Fu, Y.; He, J. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocoll. 2007, 21, 575–584. [Google Scholar] [CrossRef]
- Amadori, S.; Torricelli, P.; Rubini, K.; Fini, M.; Panzavolta, S.; Bigi, A. Effect of sterilization and crosslinking on gelatin films. J. Mater. Sci. Mater. Med. 2015, 26, 69. [Google Scholar] [CrossRef] [PubMed]
- Bigi, A.; Cojazzi, G.; Panzavolta, S.; Roveri, N.; Rubini, K. Stabilization of gelatin films by crosslinking with genipin. Biomaterials 2002, 23, 4827–4832. [Google Scholar] [CrossRef]
- Wang, H.; Ding, F.; Ma, L.; Zhang, Y. Edible films from chitosan-gelatin: Physical properties and food packaging application. Food Biosci. 2021, 40, 100871. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Nakayama, A.; Aiba, S.-I. Chitosan and gelatin based edible films: State diagrams, mechanical and permeation properties. Carbohydr. Polym. 1998, 37, 371–382. [Google Scholar] [CrossRef]
- Shahriari, L.; Mohseni, M.; Yahyaei, H. The effect of cross-linking density on water vapor and oxygen permeability of hybrid UV cured nano coatings. Prog. Org. Coat. 2019, 134, 66–77. [Google Scholar] [CrossRef]
- Haghighi, H.; Biard, S.; Bigi, F.; De Leo, R.; Bedin, E.; Pfeifer, F.; Siesler, H.W.; Licciardello, F.; Pulvirenti, A. Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocoll. 2019, 95, 33–42. [Google Scholar] [CrossRef]
- Sharma, L.; Sharma, H.K.; Saini, C.S. Edible films developed from carboxylic acid cross-linked sesame protein isolate: Barrier, mechanical, thermal, crystalline and morphological properties. J. Food Sci. Technol. 2018, 55, 532–539. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.-B.; Seol, K.-H.; Kim, H.-W.; Ham, J.-S. Application of whey protein-based edible films and coatings in food industries: An updated overview. Coatings 2021, 11, 1056. [Google Scholar] [CrossRef]
- Kim, S.; Nimni, M.E.; Yang, Z.; Han, B. Chitosan/gelatin–based films crosslinked by proanthocyanidin. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2005, 75, 442–450. [Google Scholar] [CrossRef]
- Singh, N.; Georget, D.M.; Belton, P.S.; Barker, S.A. Physical properties of zein films containing salicylic acid and acetyl salicylic acid. J. Cereal Sci. 2010, 52, 282–287. [Google Scholar] [CrossRef]
- Reddy, N.; Jiang, Q.; Yang, Y. Preparation and properties of peanut protein films crosslinked with citric acid. Ind. Crops Prod. 2012, 39, 26–30. [Google Scholar] [CrossRef]
- Rui, L.; Xie, M.; Hu, B.; Zhou, L.; Yin, D.; Zeng, X. A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydrate Polymers 2017, 173, 473–481. [Google Scholar] [CrossRef]
- Ge, J.; Zeng, X.; Tao, X.; Li, X.; Shen, Z.; Yun, J.; Chen, J. Preparation and characterization of PS-PMMA/ZnO nanocomposite films with novel properties of high transparency and UV-shielding capacity. J. Appl. Polym. Sci. 2010, 118, 1507–1512. [Google Scholar] [CrossRef]
- Quiles-Carrillo, L.; Montava-Jordà, S.; Boronat, T.; Sammon, C.; Balart, R.; Torres-Giner, S. On the use of gallic acid as a potential natural antioxidant and ultraviolet light stabilizer in cast-extruded bio-based high-density polyethylene films. Polymers 2019, 12, 31. [Google Scholar] [CrossRef]
- Ramos, Ó.L.; Reinas, I.; Silva, S.I.; Fernandes, J.C.; Cerqueira, M.A.; Pereira, R.N.; Vicente, A.A.; Poças, M.F.; Pintado, M.E.; Malcata, F.X. Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll. 2013, 30, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Ichiura, H.; Morikawa, M.; Fujiwara, K. Preparation of microcapsules that produce color in response to humidity for use in intelligent functional paper. J. Mater. Sci. 2005, 40, 1987–1991. [Google Scholar] [CrossRef]
- Uranga, J.; Nguyen, B.T.; Si, T.T.; Guerrero, P.; de la Caba, K. The Effect of Cross-Linking with Citric Acid on the Properties of Agar/Fish Gelatin Films. Polymers 2020, 12, 291. [Google Scholar] [CrossRef] [PubMed]
- Ptiček Siročić, A.; Kratofil Krehula, L.; Katančić, Z.; Hrnjak-Murgić, Z. Characterization of casein fractions–Comparison of commercial casein and casein extracted from cow’s milk. Chem. Biochem. Eng. Q. 2016, 30, 501–509. [Google Scholar] [CrossRef]
- Guerrero, P.; Stefani, P.; Ruseckaite, R.; De la Caba, K. Functional properties of films based on soy protein isolate and gelatin processed by compression molding. J. Food Eng. 2011, 105, 65–72. [Google Scholar] [CrossRef]
- Bigi, A.; Cojazzi, G.; Panzavolta, S.; Rubini, K.; Roveri, N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 2001, 22, 763–768. [Google Scholar] [CrossRef]
- Chen, P.; Liu, L.; Pan, J.; Mei, J.; Li, C.; Zheng, Y. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater. Sci. Eng. C 2019, 97, 325–335. [Google Scholar] [CrossRef]
- Salari, M.; Khiabani, M.S.; Mokarram, R.R.; Ghanbarzadeh, B.; Kafil, H.S. Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll. 2018, 84, 414–423. [Google Scholar] [CrossRef]
- Moreno, M.A.; Bojorges, H.; Falcó, I.; Sánchez, G.; López-Carballo, G.; López-Rubio, A.; Zampini, I.C.; Isla, M.I.; Fabra, M.J. Active properties of edible marine polysaccharide-based coatings containing Larrea nitida polyphenols enriched extract. Food Hydrocoll. 2020, 102, 105595. [Google Scholar] [CrossRef]
- Liu, F.; Antoniou, J.; Li, Y.; Ma, J.; Zhong, F. Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocoll. 2015, 45, 140–149. [Google Scholar] [CrossRef]
- Lin, J.; Pan, D.; Sun, Y.; Ou, C.; Wang, Y.; Cao, J. The modification of gelatin films: Based on various cross-linking mechanism of glutaraldehyde at acidic and alkaline conditions. Food Sci. Nutr. 2019, 7, 4140–4146. [Google Scholar] [CrossRef]
- Biranje, S.; Madiwale, P.; Adivarekar, R. Porous electrospun Casein/PVA nanofibrous mat for its potential application as wound dressing material. J. Porous Mater. 2019, 26, 29–40. [Google Scholar] [CrossRef]
- Yan, M.; Li, B.; Zhao, X.; Yi, J. Physicochemical properties of gelatin gels from walleye pollock (Theragra chalcogramma) skin cross-linked by gallic acid and rutin. Food Hydrocoll. 2011, 25, 907–914. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, X.; Zhou, C.; Yagoub, A.E.A.; Ma, H. Effects of collagen and casein with phenolic compounds interactions on protein in vitro digestion and antioxidation. LWT 2020, 124, 109192. [Google Scholar] [CrossRef]
Codes | Chemical Composition of the Edible Films |
---|---|
GC-1 | C + G + Gly |
GC-2 | C + G + Gly + GA (2%) |
GC-3 | C + G + Gly + GA (3%) |
GC-4 | C + G + Gly + GA (4%) |
GC-5 | C + G + Gly + GA (5%) |
Sample Codes | Thickness (μm) | SD (%) | WS (%) | WVP (×10–12 g⋅cm/cm2⋅s⋅Pa) | MC (%) |
---|---|---|---|---|---|
GC-1 | 58.17 ± 1.2 a | 118.1 ± 4.21 a | 89 ± 3.11 a | 3.89 ± 0.03 a | 13.11 ± 0.21 a |
GC-2 | 51.17 ± 1.1 b | 93.1 ± 4.35 b | 78 ± 2.67 b | 3.01 ± 0.01 b | 11.67 ± 0.23 b |
GC-3 | 47.71 ± 1.7 c | 84.3 ± 1.73 c | 67 ± 3.24 c | 2.58 ± 0.01 c | 10.55 ± 0.17 c |
GC-4 | 41.22 ± 2.6 d | 69.1 ± 3.41 d | 54 ± 2.12 d | 1.75 ± 0.02 d | 9.11 ± 0.11 d |
GC-5 | 35.07 ± 1.7 e | 61.2 ± 2.17 e | 51 ± 1.19 d | 1.17 ± 0.01 e | 8.22 ± 0.16 e |
Sample Codes | EB (%) | TS (MPa) | Ym |
---|---|---|---|
GC-1 | 37.21 ± 1.22 a | 3.06 ± 0.01 d | 21.33 ± 2.01 d |
GC-2 | 31.22 ± 1.01 b | 5.02 ± 0.02 c | 29.13 ± 2.17 c |
GC-3 | 17.11 ± 1.2 c | 7.24 ± 0.01 b | 43.02 ± 1.3 b |
GC-4 | 15.32 ± 0.2 c | 7.11 ± 0.01 b | 48.15 ± 2.1 a |
GC-5 | 10.11 ± 0.3 d | 9.21 ± 0.03 a | 51.17 ± 3.1 a |
Sample Codes | L | A* | B* | △E* | CI* | Transparency |
---|---|---|---|---|---|---|
GC-1 | 35.05 e | 8.21 a | 15.03 a | 31.98641 a | 15.07021 a | 3.121 ± 0.01 a |
GC-2 | 47.11 d | 5.11 b | 12.11 b | 19.82917 b | 12.18457 b | 2.811 ± 0.02 b |
GC-3 | 56.22 c | 3.07 c | 8.01 c | 10.12526 c | 8.41988 c | 2.423 ± 0.03 b |
GC-4 | 61.34 b | 3.62 c | 5.11 d | 5.32894 d | 5.280233 d | 2.110 ± 0.01 b |
GC-5 | 68.13 a | 1.18 d | 2.02 e | 5.690677 d | 3.517134 e | 1.910 ± 0.02 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatia, S.; Al-Harrasi, A.; Al-Azri, M.S.; Ullah, S.; Makeen, H.A.; Meraya, A.M.; Albratty, M.; Najmi, A.; Anwer, M.K. Gallic Acid Crosslinked Gelatin and Casein Based Composite Films for Food Packaging Applications. Polymers 2022, 14, 4065. https://doi.org/10.3390/polym14194065
Bhatia S, Al-Harrasi A, Al-Azri MS, Ullah S, Makeen HA, Meraya AM, Albratty M, Najmi A, Anwer MK. Gallic Acid Crosslinked Gelatin and Casein Based Composite Films for Food Packaging Applications. Polymers. 2022; 14(19):4065. https://doi.org/10.3390/polym14194065
Chicago/Turabian StyleBhatia, Saurabh, Ahmed Al-Harrasi, Mohammed Said Al-Azri, Sana Ullah, Hafiz A. Makeen, Abdulkarim M. Meraya, Mohammed Albratty, Asim Najmi, and Md. Khalid Anwer. 2022. "Gallic Acid Crosslinked Gelatin and Casein Based Composite Films for Food Packaging Applications" Polymers 14, no. 19: 4065. https://doi.org/10.3390/polym14194065
APA StyleBhatia, S., Al-Harrasi, A., Al-Azri, M. S., Ullah, S., Makeen, H. A., Meraya, A. M., Albratty, M., Najmi, A., & Anwer, M. K. (2022). Gallic Acid Crosslinked Gelatin and Casein Based Composite Films for Food Packaging Applications. Polymers, 14(19), 4065. https://doi.org/10.3390/polym14194065