Recent Trends in Magnetic Polymer Nanocomposites for Aerospace Applications: A Review
Abstract
:1. Introduction
2. Magnetic Polymer Nanocomposites (MPNs)
- Magnetic conductive materials: These are useful in manufacturing sensors and devices. They are made up of magnetic nanoparticles in a conductive polymeric matrix. A charge transfer can be established between the surface of the particles and the polymer, so the material acts as an electronic system. Some proposed compositions are magnetite-polyaniline, maghemite-polypyrrole, cobalt ferrite-polypyrrole, and various metal-polymer combinations [45,46]
- Transparent magnetic materials: As magnetic oxides are considerably more transparent to visible light than nanoparticles, magnetic nanocomposites can be made with reasonable transparency and greater magnetization, by more than an order of magnitude, than stronger ones such as transparent magnets.
3. Synthesis of Magnetic Polymer Nanocomposites
3.1. Molding
3.2. Coprecipitation
3.3. In Situ Precipitation
3.4. Blending
3.5. Grafting Methods
4. Characterization of Polymer Nanocomposites for Aerospace Industry
4.1. Computational Modelling
4.2. Atomic Force Microscopy (AFM)
4.3. Transmission Electron Microscopy (TEM)
4.4. Raman Spectroscopy
4.5. Thermal Characterization
4.6. X-ray Diffraction
5. Aerospace Applications
5.1. EMI Shielding
5.2. Coatings and Paints
5.3. Structural Health Monitoring
6. Future Research Trends
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muhammad, A.; Rahman, M.R.; Baini, R.; Bin Bakri, M.K. Applications of sustainable polymer composites in automobile and aerospace industry. In Advances in Sustainable Polymer Composites; Rahman, M.R., Ed.; Elsevier: Duxford, UK, 2021; pp. 185–207. [Google Scholar]
- Ramli, N.; Norkhairunnisa, M.; Ando, Y.; Abdan, K.; Leman, Z. Advanced Polymer Composite for Aerospace Engineering Applications. In Advanced Composites in Aerospace Engineering Applications; Mazlan, N., Sapuan, S.M., Ilyas, R.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–21. ISBN 978-3-030-88191-7. [Google Scholar]
- Mittal, V. Polymer Nanocomposite Coatings; Mittal, V., Ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9780429098154. [Google Scholar]
- Laurvick, C.A. Singaraju Nanotechnology in Aerospace Systems. IEEE Aerosp. Electron. Syst. Mag. 2003, 18, 18–22. [Google Scholar] [CrossRef]
- Forloni, G. Responsible nanotechnology development. J. Nanoparticle Res. 2012, 14, 1007. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Darwish, M.S.A.; Mostafa, M.H.; Al-Harbi, L.M. Polymeric Nanocomposites for Environmental and Industrial Applications. Int. J. Mol. Sci. 2022, 23, 1023. [Google Scholar] [CrossRef] [PubMed]
- Hanemann, T.; Szabó, D.V. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials 2010, 3, 3468–3517. [Google Scholar] [CrossRef]
- Pansare, A.V.; Chhatre, S.Y.; Khairkar, S.R.; Bell, J.G.; Barbezat, M.; Chakrabarti, S.; Nagarkar, A.A. “Shape-Coding”: Morphology-Based Information System for Polymers and Composites. ACS Appl. Mater. Interfaces 2020, 12, 27555–27561. [Google Scholar] [CrossRef]
- Mahmoud Zaghloul, M.Y.; Yousry Zaghloul, M.M.; Yousry Zaghloul, M.M. Developments in polyester composite materials–An in-depth review on natural fibres and nano fillers. Compos. Struct. 2021, 278, 114698. [Google Scholar] [CrossRef]
- Qin, Q.H. Introduction to the composite and its toughening mechanisms. In Toughening Mechanisms in Composite Materials; Qin, Q., Ye, J., Eds.; Elsevier: Cambridge, UK, 2015; pp. 1–32. [Google Scholar]
- Arumugaprabu, V.; Ko, T.J.; Uthayakumar, M.; Joel Johnson, R.D. Failure analysis in hybrid composites prepared using industrial wastes. In Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 229–244. [Google Scholar]
- Baird, D.G. Polymer Processing. In Encyclopedia of Physical Science and Technology; Elsevier: Amsterdam, The Netherlands, 2003; pp. 611–643. [Google Scholar]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Pardo, S.; Bucio, E. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers 2021, 13, 2998. [Google Scholar] [CrossRef]
- Ban, C.; Dinca, I.; Stefan, A.; Pelin, G. Nanocomposites as Advanced Materials for Aerospace Industry. INCAS Bull. 2012, 4, 57–72. [Google Scholar] [CrossRef]
- Harito, C.; Bavykin, D.V.; Yuliarto, B.; Dipojono, H.K.; Walsh, F.C. Polymer nanocomposites having a high filler content: Synthesis, structures, properties, and applications. Nanoscale 2019, 11, 4653–4682. [Google Scholar] [CrossRef]
- Park, S.-J.; Seo, M.-K. Types of Composites. In Interface Science and Composites; Elsevier: Amsterdam, The Netherlands, 2011; pp. 501–629. [Google Scholar]
- Zhu, J.; Wei, S.; Chen, M.; Gu, H.; Rapole, S.B.; Pallavkar, S.; Ho, T.C.; Hopper, J.; Guo, Z. Magnetic nanocomposites for environmental remediation. Adv. Powder Technol. 2013, 24, 459–467. [Google Scholar] [CrossRef]
- Lee, K.-P.; Gopalan, A.; Komathi, S.; Raghupathy, D. Polyaniline-based nanocomposites: Preparation, properties and applications. In Physical Properties and Applications of Polymer Nanocomposites; Tjong, S.C., Mai, Y.-W., Eds.; Elsevier: Cambridge, UK, 2010; pp. 187–243. [Google Scholar]
- Purkait, M.K.; Sinha, M.K.; Mondal, P.; Singh, R. (Eds.) Magnetic-Responsive Membranes. In Stimuli Responsive Polymeric Membranes; Elsevier: Cambridge, UK, 2018; pp. 193–219. [Google Scholar]
- Behrens, S.; Appel, I. Magnetic nanocomposites. Curr. Opin. Biotechnol. 2016, 39, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Rathod, V.T.; Kumar, J.S.; Jain, A. Polymer and ceramic nanocomposites for aerospace applications. Appl. Nanosci. 2017, 7, 519–548. [Google Scholar] [CrossRef]
- Yadav, R.; Tirumali, M.; Wang, X.; Naebe, M.; Kandasubramanian, B. Polymer composite for antistatic application in aerospace. Def. Technol. 2020, 16, 107–118. [Google Scholar] [CrossRef]
- Wu, S.; Hu, W.; Ze, Q.; Sitti, M.; Zhao, R. Multifunctional magnetic soft composites: A review. Multifunct. Mater. 2020, 3, 042003. [Google Scholar] [CrossRef]
- Anbusagar, N.R.R.; Palanikumar, K.; Ponshanmugakumar, A. Preparation and properties of nanopolymer advanced composites: A review. In Polymer-based Nanocomposites for Energy and Environmental Applications; Jawaid, M., Khan, M., Eds.; Elsevier: Duxford, UK, 2018; pp. 27–73. ISBN 9780081019115. [Google Scholar]
- Li, Z.; Liu, F.; Yang, G.; Li, H.; Dong, L.; Xiong, C.; Wang, Q. Enhanced energy storage performance of ferroelectric polymer nanocomposites at relatively low electric fields induced by surface modified BaTiO3 nanofibers. Compos. Sci. Technol. 2018, 164, 214–221. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Zhu, Y.; Jiang, P.; Huang, X. Tailoring the polarity of polymer shell on BaTiO3 nanoparticle surface for improved energy storage performance of dielectric polymer nanocomposites. Chin. Chem. Lett. 2021, 32, 2229–2232. [Google Scholar] [CrossRef]
- Wilson, J.L.; Poddar, P.; Frey, N.A.; Srikanth, H.; Mohomed, K.; Harmon, J.P.; Kotha, S.; Wachsmuth, J. Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J. Appl. Phys. 2004, 95, 1439–1443. [Google Scholar] [CrossRef]
- Nagaraj, A.; Rajan, M. Future needs and trends: Influence of polymers on the environment. In Polymer Science and Innovative Applications; Al Ali Almaadeed, M., Ponnamma, D., Carignano, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 593–634. [Google Scholar]
- Sharma, S.; Verma, A.; Kumar, A.; Kamyab, H. Magnetic Nano-Composites and their Industrial Applications. Nano Hybrids Compos. 2018, 20, 149–172. [Google Scholar] [CrossRef]
- Thévenot, J.; Oliveira, H.; Sandre, O.; Lecommandoux, S. Magnetic responsive polymer composite materials. Chem. Soc. Rev. 2013, 42, 7099–7116. [Google Scholar] [CrossRef] [Green Version]
- Rawat, N.K.; Ahmad, S. Unveiling nanoconducting polymers and composites for corrosion protection. In Nanomaterials-Based Coatings; Elsevier: Amsterdam, The Netherlands, 2019; pp. 373–395. [Google Scholar]
- Pandey, J.K.; Raghunatha Reddy, K.; Pratheep Kumar, A.; Singh, R.P. An overview on the degradability of polymer nanocomposites. Polym. Degrad. Stab. 2005, 88, 234–250. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Du, F.; Douglas, J.F.; Winey, K.I.; Harris, R.H.; Shields, J.R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 2005, 4, 928–933. [Google Scholar] [CrossRef]
- Leszczyńska, A.; Njuguna, J.; Pielichowski, K.; Banerjee, J.R. Polymer/montmorillonite nanocomposites with improved thermal properties. Thermochim. Acta 2007, 453, 75–96. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Hwu, J.M.; Jiang, G.J.; Gao, Z.M.; Xie, W.; Pan, W.P. The characterization of organic modified clay and clay-filled PMMA nanocomposite. J. Appl. Polym. Sci. 2002, 83, 1702–1710. [Google Scholar] [CrossRef]
- Njuguna, J.; Pielichowski, K.; Fan, J. Polymer nanocomposites for aerospace applications. In Advances in Polymer Nanocomposites; Fengge, G., Ed.; Elsevier: Cambridge, UK, 2012; pp. 472–539. ISBN 9781845699406. [Google Scholar]
- Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 2009, 12, 1–39. [Google Scholar] [CrossRef]
- Azeez, A.A.; Rhee, K.Y.; Park, S.J.; Hui, D. Epoxy clay nanocomposites–processing, properties and applications: A review. Compos. Part B Eng. 2013, 45, 308–320. [Google Scholar] [CrossRef]
- Becker, O.; Varley, R.J.; Simon, G.P. Thermal stability and water uptake of high performance epoxy layered silicate nanocomposites. Eur. Polym. J. 2004, 40, 187–195. [Google Scholar] [CrossRef]
- Choudalakis, G.; Gotsis, A.D. Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J. 2009, 45, 967–984. [Google Scholar] [CrossRef]
- Jalali Dil, E.; Ben Dhieb, F.; Ajji, A. Modeling the effect of nanoplatelets orientation on gas permeability of polymer nanocomposites. Polymer 2019, 168, 126–130. [Google Scholar] [CrossRef]
- Fulco, A.P.P.; Melo, J.D.D.; Paskocimas, C.A.; de Medeiros, S.N.; de Machado, F.L.A.; Rodrigues, A.R. Magnetic properties of polymer matrix composites with embedded ferrite particles. NDT E Int. 2016, 77, 42–48. [Google Scholar] [CrossRef]
- Garzón, A.O.; Landínez, D.A.; Roa-Rojas, J.; Fajardo-Tolosa, F.E.; Peña-Rodríguez, G.; Parra-Vargas, C.A. Production and structural, electrical and magnetic characterization of a composite material based on powdered magnetite and high density polyethylene. Rev. Acad. Colomb. Cienc. Exactas Físicas Y Nat. 2017, 41, 154. [Google Scholar] [CrossRef]
- Zasońska, B.A.; Acharya, U.; Pfleger, J.; Humpolíček, P.; Vajďák, J.; Svoboda, J.; Petrovsky, E.; Hromádková, J.; Walterová, Z.; Bober, P. Multifunctional polypyrrole@maghemite@silver composites: Synthesis, physico-chemical characterization and antibacterial properties. Chem. Pap. 2018, 72, 1789–1797. [Google Scholar] [CrossRef]
- Pardo, A.; Gómez-Florit, M.; Barbosa, S.; Taboada, P.; Domingues, R.M.A.; Gomes, M.E. Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS Nano 2021, 15, 175–209. [Google Scholar] [CrossRef] [PubMed]
- Hui, B.H.; Salimi, M.N. Production of Iron Oxide Nanoparticles by Co-Precipitation method with Optimization Studies of Processing Temperature, pH and Stirring Rate. IOP Conf. Ser. Mater. Sci. Eng. 2020, 743, 012036. [Google Scholar] [CrossRef]
- Gill, N.; Sharma, A.L.; Gupta, V.; Tomar, M.; Pandey, O.P.; Singh, D.P. Enhanced microwave absorption and suppressed reflection of polypyrrole-cobalt ferrite-graphene nanocomposite in X-band. J. Alloys Compd. 2019, 797, 1190–1197. [Google Scholar] [CrossRef]
- Bustamante-Torres, M.; Romero-Fierro, D.; Estrella-Nuñez, J.; Arcentales-Vera, B.; Chichande-Proaño, E.; Bucio, E. Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review. Polymers 2022, 14, 752. [Google Scholar] [CrossRef]
- Cabana, S.; Lecona-Vargas, C.S.; Meléndez-Ortiz, H.I.; Contreras-García, A.; Barbosa, S.; Taboada, P.; Magariños, B.; Bucio, E.; Concheiro, A.; Alvarez-Lorenzo, C. Silicone rubber films functionalized with poly(acrylic acid) nanobrushes for immobilization of gold nanoparticles and photothermal therapy. J. Drug Deliv. Sci. Technol. 2017, 42, 245–254. [Google Scholar] [CrossRef]
- Lipomi, D.J.; Martinez, R.V.; Cademartiri, L.; Whitesides, G.M. Soft Lithographic Approaches to Nanofabrication. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Oxford, UK, 2012; pp. 211–231. [Google Scholar]
- Trochu, F.; Gauvin, R.; Gao, D.-M. Numerical analysis of the resin transfer molding process by the finite element method. Adv. Polym. Technol. 1993, 12, 329–342. [Google Scholar] [CrossRef]
- Mallick, P.K. Failure of polymer matrix composites (PMCs) in automotive and transportation applications. In Failure Mechanisms in Polymer Matrix Composites; Elsevier: Cambridge, UK, 2012; pp. 368–392. [Google Scholar]
- Marques, A.T. Fibrous materials reinforced composites production techniques. In Fibrous and Composite Materials for Civil Engineering Applications; Fangueiro, R., Ed.; Elsevier: Cambridge, UK, 2011; pp. 191–215. [Google Scholar]
- Nair, A.B.; Joseph, R. Eco-friendly bio-composites using natural rubber (NR) matrices and natural fiber reinforcements. In Chemistry, Manufacture and Applications of Natural Rubber; Elsevier: Amsterdam, The Netherlands, 2014; pp. 249–283. [Google Scholar]
- Romero-Fierro, D.; Bustamante-Torres, M.; Bravo-Plascencia, F.; Magaña, H.; Bucio, E. Polymer-Magnetic Semiconductor Nanocomposites for Industrial Electronic Applications. Polymers 2022, 14, 2467. [Google Scholar] [CrossRef]
- Gautam, R.K.; Chattopadhyaya, M.C. Functionalized Magnetic Nanoparticles: Adsorbents and Applications. In Nanomaterials for Wastewater Remediation; Elsevier: Oxford, UK, 2016; pp. 139–159. [Google Scholar]
- Cruz, I.F.; Freire, C.; Araújo, J.P.; Pereira, C.; Pereira, A.M. Multifunctional Ferrite Nanoparticles: From Current Trends Toward the Future. In Magnetic Nanostructured Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 59–116. [Google Scholar]
- Krishna, J.; Perumal, A.S.; Khan, I.; Chelliah, R.; Wei, S.; Swamidoss, C.M.A.; Oh, D.-H.; Bharathiraja, B. Synthesis of nanomaterials for biofuel and bioenergy applications. In Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 97–165. [Google Scholar]
- Fatimah, I.; Fadillah, G.; Yudha, S.P. Synthesis of iron-based magnetic nanocomposites: A review. Arab. J. Chem. 2021, 14, 103301. [Google Scholar] [CrossRef]
- Mehra, N.; Jeske, M.; Yang, X.; Gu, J.; Kashfipour, M.A.; Li, Y.; Baughman, J.A.; Zhu, J. Hydrogen-Bond Driven Self-Assembly of Two-Dimensional Supramolecular Melamine-Cyanuric Acid Crystals and Its Self-Alignment in Polymer Composites for Enhanced Thermal Conduction. ACS Appl. Polym. Mater. 2019, 1, 1291–1300. [Google Scholar] [CrossRef]
- Michałowski, S.; Pielichowski, K. Nanoparticles as flame retardants in polymer materials: Mode of action, synergy effects, and health/environmental risks. In Health and Environmental Safety of Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 375–415. [Google Scholar]
- Rane, A.V.; Kanny, K.; Abitha, V.K.; Thomas, S. Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In Synthesis of Inorganic Nanomaterials; Bhagyaraj, S., Oluwafemi, O., Kalarikkal, N., Thomas, S., Eds.; Elsevier: Cambridge, UK, 2018; pp. 121–139. [Google Scholar]
- Rahman, M.R.; Hamdan, S. bin Study on physical, mechanical, morphological and thermal properties of styrene-co-glycidyl methacrylate/fumed silica/clay nanocomposites. In Silica and Clay Dispersed Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2018; pp. 71–85. [Google Scholar]
- Saba, N.; Jawaid, M.; Sultan, M.T.H. Thermal properties of oil palm biomass based composites. In Lignocellulosic Fibre and Biomass-Based Composite Materials; Jawaid, M., Tahir, P.M., Saba, N., Eds.; Elsevier: New Delhi, India, 2017; pp. 95–122. [Google Scholar]
- Palmero, E.M.; Bollero, A. 3D and 4D Printing of Functional and Smart Composite Materials. In Encyclopedia of Materials: Composites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 402–419. [Google Scholar]
- Konwar, A.; Kalita, S.; Kotoky, J.; Chowdhury, D. Chitosan–Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm. ACS Appl. Mater. Interfaces 2016, 8, 20625–20634. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, Y.; Jia, F.; Li, Y.; Song, S. Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation. Renew. Energy 2021, 163, 146–153. [Google Scholar] [CrossRef]
- Su, H.; Han, X.; He, L.; Deng, L.; Yu, K.; Jiang, H.; Wu, C.; Jia, Q.; Shan, S. Synthesis and characterization of magnetic dextran nanogel doped with iron oxide nanoparticles as magnetic resonance imaging probe. Int. J. Biol. Macromol. 2019, 128, 768–774. [Google Scholar] [CrossRef]
- Gopi, S.; Balakrishnan, P.; Sreekala, M.S.; Pius, A.; Thomas, S. Green materials for aerospace industries. In Biocomposites for High-Performance Applications; Ray, D., Ed.; Elsevier: Cambridge, UK, 2017; pp. 307–318. [Google Scholar]
- Verma, D.; Goh, K.L. Functionalized Graphene-Based Nanocomposites for Energy Applications. In Functionalized Graphene Nanocomposites and Their Derivatives; Elsevier: Amsterdam, The Netherlands, 2019; pp. 219–243. [Google Scholar]
- Ercan, N.; Durmus, A.; Kaşgöz, A. Comparing of melt blending and solution mixing methods on the physical properties of thermoplastic polyurethane/organoclay nanocomposite films. J. Thermoplast. Compos. Mater. 2017, 30, 950–970. [Google Scholar] [CrossRef]
- Fink, J.K. Poly(p-xylene)s. In High Performance Polymers; Fink, J.K., Ed.; Elsevier: Oxford, UK, 2014; pp. 43–69. [Google Scholar]
- Vasudeo Rane, A.; Kanny, K.; Abitha, V.K.; Patil, S.S.; Thomas, S. Clay-Polymer Composites. In Clay-Polymer Nanocomposites; Jlassi, K., Chehimi, M., Thomas, S., Eds.; Elsevier: Oxford, UK, 2017; pp. 113–144. [Google Scholar]
- Flores-Rojas, G.G.; López-Saucedo, F.; Bucio, E. Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review. Radiat. Phys. Chem. 2020, 169, 107962. [Google Scholar] [CrossRef]
- Thu, T.V.; Takamura, T.; Tsetserukou, D.; Sandhu, A. Preparation and Characterization of Magnetic Thermoplastic-Based Nanocomposites; American Institute of Physics: University Park, MD, USA, 2014; pp. 141–144. [Google Scholar]
- Pu, Z.; Zhou, X.; Yang, X.; Jia, K.; Liu, X. One step grafting of iron phthalocyanine containing flexible chains on Fe3O4 nanoparticles towards high performance polymer magnetic composites. J. Magn. Magn. Mater. 2015, 385, 368–376. [Google Scholar] [CrossRef]
- Verheyen, L.; Leysen, P.; Van Den Eede, M.-P.; Ceunen, W.; Hardeman, T.; Koeckelberghs, G. Advances in the controlled polymerization of conjugated polymers. Polymer 2017, 108, 521–546. [Google Scholar] [CrossRef]
- Lutz, P.J.; Peruch, F. Graft Copolymers and Comb-Shaped Homopolymers. In Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; pp. 511–542. [Google Scholar]
- Yang, G.; Park, M.; Park, S.-J. Recent progresses of fabrication and characterization of fibers-reinforced composites: A review. Compos. Commun. 2019, 14, 34–42. [Google Scholar] [CrossRef]
- Francis, R.; Joy, N.; Aparna, E.P.; Vijayan, R. Polymer Grafted Inorganic Nanoparticles, Preparation, Properties, and Applications: A Review. Polym. Rev. 2014, 54, 268–347. [Google Scholar] [CrossRef]
- Hu, X.; Nian, G.; Liang, X.; Wu, L.; Yin, T.; Lu, H.; Qu, S.; Yang, W. Adhesive Tough Magnetic Hydrogels with High Fe3O4 Content. ACS Appl. Mater. Interfaces 2019, 11, 10292–10300. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Zhang, R.; Yuan, C.; Ma, Z.; Du, Y.; Liu, L.; Huang, Y. Surface modification of aramid fibers by amino functionalized silane grafting to improve interfacial property of aramid fibers reinforced composite. Polym. Compos. 2020, 41, 2046–2053. [Google Scholar] [CrossRef]
- Islam, M.S.; Deng, Y.; Tong, L.; Faisal, S.N.; Roy, A.K.; Minett, A.I.; Gomes, V.G. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: Towards next generation aerospace composites and energy storage applications. Carbon N. Y. 2016, 96, 701–710. [Google Scholar] [CrossRef]
- Zhao, W.; Li, M.; Peng, H.-X. Functionalized MWNT-Doped Thermoplastic Polyurethane Nanocomposites for Aerospace Coating Applications. Macromol. Mater. Eng. 2010, 295, 838–845. [Google Scholar] [CrossRef]
- Basheer, B.V.; George, J.J.; Siengchin, S.; Parameswaranpillai, J. Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review. Nano-Struct. Nano-Objects 2020, 22, 100429. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, L.; Zhan, C.; Shao, Q.; Guo, Z.; Zhang, L. Overview of polymer nanocomposites: Computer simulation understanding of physical properties. Polymer 2017, 133, 272–287. [Google Scholar] [CrossRef]
- Khabaz, F.; Islam, R.; Khare, R. Thermal conductivity of polymer nanocomposites: Applications of molecular dynamics simulations. In Thermal Behaviour and Applications of Carbon-Based Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 305–324. [Google Scholar]
- Zeng, Q.; Yu, A. Theory and Simulation in Nanocomposites. In Polymer Composites; Thomas, S., Joseph, K., Malhotra, S.K., Goda, K., Sreekala, M.S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 53–74. [Google Scholar]
- Smith, J.S.; Bedrov, D.; Smith, G.D. A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Compos. Sci. Technol. 2003, 63, 1599–1605. [Google Scholar] [CrossRef]
- Lin, F.; Xiang, Y.; Shen, H.-S. Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites—A molecular dynamics simulation. Compos. Part B Eng. 2017, 111, 261–269. [Google Scholar] [CrossRef]
- Hagita, K.; Morita, H.; Takano, H. Molecular dynamics simulation study of a fracture of filler-filled polymer nanocomposites. Polymer 2016, 99, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Njuguna, J.; Pielichowski, K. Polymer Nanocomposites for Aerospace Applications: Characterization. Adv. Eng. Mater. 2004, 6, 204–210. [Google Scholar] [CrossRef]
- Eslami, B.; Damircheli, M. Biharmonic versus bimodal AFM: Numerical and experimental study on soft matter. J. Appl. Phys. 2019, 126, 095301. [Google Scholar] [CrossRef]
- Kocun, M.; Labuda, A.; Meinhold, W.; Revenko, I.; Proksch, R. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode. ACS Nano 2017, 11, 10097–10105. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.K.; Shundo, A.; Liang, X.; Yamamoto, S.; Tanaka, K.; Nakajima, K. Unraveling Nanoscale Elastic and Adhesive Properties at the Nanoparticle/Epoxy Interface Using Bimodal Atomic Force Microscopy. ACS Appl. Mater. Interfaces 2022, 14, 42713–42722. [Google Scholar] [CrossRef]
- Platz, D.; Tholén, E.A.; Pesen, D.; Haviland, D.B. Intermodulation atomic force microscopy. Appl. Phys. Lett. 2008, 92, 153106. [Google Scholar] [CrossRef]
- Harcombe, D.M.; Ruppert, M.G.; Fleming, A.J. A review of demodulation techniques for multifrequency atomic force microscopy. Beilstein J. Nanotechnol. 2020, 11, 76–91. [Google Scholar] [CrossRef]
- Ghasem Zadeh Khorasani, M.; Silbernagl, D.; Szymoniak, P.; Hodoroaba, V.-D.; Sturm, H. The effect of boehmite nanoparticles (γ-AlOOH) on nanomechanical and thermomechanical properties correlated to crosslinking density of epoxy. Polymer 2019, 164, 174–182. [Google Scholar] [CrossRef]
- Liparoti, S.; Sorrentino, A.; Speranza, V. Micromechanical Characterization of Complex Polypropylene Morphologies by HarmoniX AFM. Int. J. Polym. Sci. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Guadagno, L.; Naddeo, C.; Raimondo, M.; Speranza, V.; Pantani, R.; Acquesta, A.; Carangelo, A.; Monetta, T. UV Irradiated Graphene-Based Nanocomposites: Change in the Mechanical Properties by Local HarmoniX Atomic Force Microscopy Detection. Materials 2019, 12, 962. [Google Scholar] [CrossRef]
- Ebeling, D.; Solares, S.D. Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case. Beilstein J. Nanotechnol. 2013, 4, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Jafari Eskandari, M.; Gostariani, R.; Asadi Asadabad, M. Transmission Electron Microscopy of Nanomaterials. In Electron Crystallography; IntechOpen, Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-83880-189-2. [Google Scholar]
- Park, C.; Ounaies, Z.; Watson, K.A.; Crooks, R.E.; Smith, J.; Lowther, S.E.; Connell, J.W.; Siochi, E.J.; Harrison, J.S.; Clair, T.L.S. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 2002, 364, 303–308. [Google Scholar] [CrossRef]
- Thakur, V.K.; Li, Y.; Wu, H.; Kessler, M.R. Synthesis, characterization, and functionalization of zirconium tungstate (ZrW2O8) nano-rods for advanced polymer nanocomposites. Polym. Adv. Technol. 2017, 28, 1375–1381. [Google Scholar] [CrossRef]
- Xavier, J.R.; Jeeva, N. Evaluation of newly synthesized nanocomposites containing thiazole modified aluminium nitride nanoparticles for aerospace applications. Mater. Chem. Phys. 2022, 286, 126200. [Google Scholar] [CrossRef]
- Yoonessi, M.; Gaier, J.R.; Peck, J.A.; Meador, M.A. Controlled direction of electrical and mechanical properties in nickel tethered graphene polyimide nanocomposites using magnetic field. Carbon N. Y. 2015, 84, 375–382. [Google Scholar] [CrossRef]
- Zuo, Y.; Yao, Z.; Lin, H.; Zhou, J.; Liu, P.; Chen, W.; Shen, C. Coralliform Li0.35Zn0.3Fe2.35O4/polyaniline nanocomposites: Facile synthesis and enhanced microwave absorption properties. J. Alloys Compd. 2018, 746, 496–502. [Google Scholar] [CrossRef]
- Gouadec, G.; Colomban, P. Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 2007, 53, 1–56. [Google Scholar] [CrossRef]
- Pérez, R.; Banda, S.; Ounaies, Z. Determination of the orientation distribution function in aligned single wall nanotube polymer nanocomposites by polarized Raman spectroscopy. J. Appl. Phys. 2008, 103, 074302. [Google Scholar] [CrossRef]
- Haibat, J.; Ceneviva, S.; Spencer, M.P.; Kwok, F.; Trivedi, S.; Mohney, S.E.; Yamamoto, N. Preliminary demonstration of energy-efficient fabrication of aligned CNT-polymer nanocomposites using magnetic fields. Compos. Sci. Technol. 2017, 152, 27–35. [Google Scholar] [CrossRef]
- Huang, C.; Qian, X.; Yang, R. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Rep. 2018, 132, 1–22. [Google Scholar] [CrossRef]
- Wing, M.Y.; Zhongzhen, Y.; Xaolin, X.; Qingxin, Z.; Jun, M. Polymer Nanocomposites and Their Applications. HKIE Trans. 2003, 10, 67–73. [Google Scholar] [CrossRef]
- Corcione, C.; Greco, A.; Frigione, M.; Maffezzoli, A. Polymer Nanocomposites Characterized by Thermal Analysis Techniques. In Polymer Composites Volume 2: Nanocomposites; Thomas, S., Joseph, K., Malhotra, S.K., Goda, K., Sreekala, M.S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Singapore, 2013; pp. 201–217. ISBN 978-3-527-32979-3. [Google Scholar]
- Zhang, D.; Chung, R.; Karki, A.B.; Li, F.; Young, D.P.; Guo, Z. Magnetic and Magnetoresistance Behaviors of Solvent Extracted Particulate Iron/Polyacrylonitrile Nanocomposites. J. Phys. Chem. C 2010, 114, 212–219. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, X.; Gu, H.; Wang, Y.; Yan, X.; Ding, D.; Long, J.; Tadakamalla, S.; Wang, Q.; Khan, M.A.; et al. Reinforced magnetic epoxy nanocomposites with conductive polypyrrole nanocoating on nanomagnetite as a coupling agent. RSC Adv. 2014, 4, 36560. [Google Scholar] [CrossRef]
- Zotti, A.; Borriello, A.; Zuppolini, S.; Antonucci, V.; Giordano, M.; Pomogailo, A.D.; Lesnichaya, V.A.; Golubeva, N.D.; Bychkov, A.N.; Dzhardimalieva, G.I.; et al. Fabrication and characterization of metal-core carbon-shell nanoparticles filling an aeronautical composite matrix. Eur. Polym. J. 2015, 71, 140–151. [Google Scholar] [CrossRef]
- Govindaraj, B.; Sarojadevi, M. Microwave-assisted synthesis of nanocomposites from polyimides chemically cross-linked with functionalized carbon nanotubes for aerospace applications. Polym. Adv. Technol. 2018, 29, 1718–1726. [Google Scholar] [CrossRef]
- Aktitiz, İ.; Delibaş, H.; Topcu, A.; Aydın, K. Morphological, mechanical, magnetic, and thermal properties of 3D printed functional polymeric structures modified with Fe2O3 nanoparticles. Polym. Compos. 2021, 42, 6839–6846. [Google Scholar] [CrossRef]
- Abhilash, V.; Rajender, N.; Suresh, K. X-ray diffraction spectroscopy of polymer nanocomposites. In Spectroscopy of Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2016; pp. 410–451. [Google Scholar]
- Sanida, A.; Stavropoulos, S.G.; Speliotis, T.; Psarras, G.C. Investigating the Effect of Zn Ferrite Nanoparticles on the Thermomechanical, Dielectric and Magnetic Properties of Polymer Nanocomposites. Materials 2019, 12, 3015. [Google Scholar] [CrossRef]
- Sanida, A.; Stavropoulos, S.G.; Speliotis, T.; Psarras, G.C. Probing the magnetoelectric response and energy efficiency in Fe3O4/epoxy nanocomposites. Polym. Test. 2020, 88, 106560. [Google Scholar] [CrossRef]
- Mohamed, M.B.; Abdel-Kader, M.H. Effect of annealed ZnS nanoparticles on the structural and optical properties of PVA polymer nanocomposite. Mater. Chem. Phys. 2020, 241, 122285. [Google Scholar] [CrossRef]
- Guo, J.; Chen, Z.; Abdul, W.; Kong, J.; Khan, M.A.; Young, D.P.; Zhu, J.; Guo, Z. Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv. Compos. Hybrid Mater. 2021, 4, 534–542. [Google Scholar] [CrossRef]
- Mustafa, B.S.; Jamal, G.M.; Abdullah, O.G. Improving the tensile, toughness, and flexural properties of epoxy resin based nanocomposites filled with ZrO2 and Y2O3 nanoparticles. Results Phys. 2022, 38, 105662. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Sutton, M.A.; Mello, M. In Situ Nanoscale In-Plane Deformation Studies of Ultrathin Polymeric Films During Tensile Deformation Using Atomic Force Microscopy and Digital Image Correlation Techniques. IEEE Trans. Nanotechnol. 2007, 6, 4–12. [Google Scholar] [CrossRef]
- Jayakrishna, K.; Kar, V.R.; Sultan, M.T.H.; Rajesh, M. Materials selection for aerospace components. In Sustainable Composites for Aerospace Applications; Jawaid, M., Thariq, M., Eds.; Elsevier: Cambridge, UK, 2018; pp. 1–18. [Google Scholar]
- Jalali, M.; Dauterstedt, S.; Michaud, A.; Wuthrich, R. Electromagnetic shielding of polymer–matrix composites with metallic nanoparticles. Compos. Part B Eng. 2011, 42, 1420–1426. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, R.; He, D.; Ma, Y.; Qiu, J.; Jin, C.; Wang, C. Lightweight and flexible Ni-Co alloy nanoparticle-coated electrospun polymer nanofiber hybrid membranes for high-performance electromagnetic interference shielding. J. Alloys Compd. 2019, 784, 244–255. [Google Scholar] [CrossRef]
- Xiao-Hong, T.; Yi, T.; Ye, W.; Yun-Xuan, W.; Ming, W. Interfacial metallization in segregated poly (lactic acid)/poly (ε-caprolactone)/multi-walled carbon nanotubes composites for enhancing electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106116. [Google Scholar] [CrossRef]
- Cheng, H.; Wei, S.; Ji, Y.; Zhai, J.; Zhang, X.; Chen, J.; Shen, C. Synergetic effect of Fe3O4 nanoparticles and carbon on flexible poly (vinylidence fluoride) based films with higher heat dissipation to improve electromagnetic shielding. Compos. Part A Appl. Sci. Manuf. 2019, 121, 139–148. [Google Scholar] [CrossRef]
- Velhal, N.; Patil, N.D.; Kulkarni, G.; Shinde, S.K.; Valekar, N.J.; Barshilia, H.C.; Puri, V. Electromagnetic shielding, magnetic and microwave absorbing properties of Polypyrrole/Ba0.6Sr0.4Fe12O19 composite synthesized via in-situ polymerization technique. J. Alloys Compd. 2019, 777, 627–637. [Google Scholar] [CrossRef]
- Xu, Y.; Qian, K.; Deng, D.; Luo, L.; Ye, J.; Wu, H.; Miao, M.; Feng, X. Electroless deposition of silver nanoparticles on cellulose nanofibrils for electromagnetic interference shielding films. Carbohydr. Polym. 2020, 250, 116915. [Google Scholar] [CrossRef]
- Gu, S.-Y.; Jin, S.-P.; Gao, X.-F.; Mu, J. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness. Smart Mater. Struct. 2016, 25, 055036. [Google Scholar] [CrossRef]
- Vertuccio, L.; Guadagno, L.; Spinelli, G.; Lamberti, P.; Zarrelli, M.; Russo, S.; Iannuzzo, G. Smart coatings of epoxy based CNTs designed to meet practical expectations in aeronautics. Compos. Part B Eng. 2018, 147, 42–46. [Google Scholar] [CrossRef]
- Liang, C.; Song, P.; Ma, A.; Shi, X.; Gu, H.; Wang, L.; Qiu, H.; Kong, J.; Gu, J. Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos. Sci. Technol. 2019, 181, 107683. [Google Scholar] [CrossRef]
- Visser, P.; Terryn, H.; Mol, J.M.C. Aerospace Coatings. In Active Protective Coatings; Hughes, A., Mol, J.M.C., Zheludkevich, M., Buchheit, R., Eds.; Springer: Amsterdam, The Netherlands, 2016; pp. 315–372. [Google Scholar]
- Peng, T.; Xiao, R.; Rong, Z.; Liu, H.; Hu, Q.; Wang, S.; Li, X.; Zhang, J. Polymer Nanocomposite-based Coatings for Corrosion Protection. Chem. Asian J. 2020, 15, 3915–3941. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.-T.; Wang, C.-C.; Chen, C.-Y. Corrosion-protective performance of magnetic CoFe2O4/polyaniline nanocomposite within epoxy coatings. J. Taiwan Inst. Chem. Eng. 2021, 127, 357–366. [Google Scholar] [CrossRef]
- Asif, A.H.; Mahajan, M.S.; Sreeharsha, N.; Gite, V.V.; Al-Dhubiab, B.E.; Kaliyadan, F.; Nanjappa, S.H.; Meravanige, G.; Aleyadhy, D.M. Enhancement of Anticorrosive Performance of Cardanol Based Polyurethane Coatings by Incorporating Magnetic Hydroxyapatite Nanoparticles. Materials 2022, 15, 2308. [Google Scholar] [CrossRef] [PubMed]
- Fazli-Shokouhi, S.; Nasirpouri, F.; Khatamian, M. Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties. J. Coatings Technol. Res. 2019, 16, 983–997. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Q.; Cheng, T.; Zhan, X.; Chen, F. Polyols-Infused Slippery Surfaces Based on Magnetic Fe3O4-Functionalized Polymer Hybrids for Enhanced Multifunctional Anti-Icing and Deicing Properties. Langmuir 2018, 34, 4052–4058. [Google Scholar] [CrossRef]
- Hou, Y.; Choy, K.L. Durable and robust PVDF-HFP/SiO2/CNTs nanocomposites for anti-icing application: Water repellency, icing delay, and ice adhesion. Prog. Org. Coatings 2022, 163, 106637. [Google Scholar] [CrossRef]
- Rocha, H.; Semprimoschnig, C.; Nunes, J.P. Sensors for process and structural health monitoring of aerospace composites: A review. Eng. Struct. 2021, 237, 112231. [Google Scholar] [CrossRef]
- Qing, X.; Li, W.; Wang, Y.; Sun, H. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors 2019, 19, 545. [Google Scholar] [CrossRef]
- D’Ambrogio, G.; Zahhaf, O.; Hebrard, Y.; Le, M.Q.; Cottinet, P.; Capsal, J. Micro-Structuration of Piezoelectric Composites Using Dielectrophoresis: Toward Application in Condition Monitoring of Bearings. Adv. Eng. Mater. 2021, 23, 2000773. [Google Scholar] [CrossRef]
- Dong, P.; Prasanth, R.; Xu, F.; Wang, X.; Li, B.; Shankar, R. Eco-friendly Polymer Nanocomposite—Properties and Processing; Thakur, V., Thakur, M., Eds.; Springer: Cambridge, UK, 2015; pp. 1–15. [Google Scholar]
Synthetic Method | Brief Description | Advantages | Disadvantages | References |
---|---|---|---|---|
Molding | A polymeric stamp is placed in contact with a precursor of a solid material |
|
| [52] |
Co-precipitation | Reducing a mixture of metallic ions using a basic solution at low temperature and in an inert atmosphere |
|
| [58] |
In situ precipitation | Nanoparticles dispersed in a monomer or monomer solution and polymerization under standard techniques |
|
| |
Blending | Polymer melted with a desired amount of filler in presence of an inert gas and heat |
|
| [64] |
Grafting | Dispersion of nanoparticles along the surface polymer matrix initiated by radical polymerization |
|
| [87] |
AFM Modes | Advantages | Disadvantages | Ref |
---|---|---|---|
AM AFM | Minimal sample damage. Low lateral forces. High-resolution. Very fast imaging capabilities. | Difficulty in quantifying sample mechanical properties | [97] |
AM-FM AFM (Bimodal) | Ability to vary and optimize the parameters without affecting topographical acquisition. Higher uniform sensitivity. | Higher cost | [103] |
ImAFM | Quantitative force measurements with nanoscale resolution. | Higher cost | [99] |
HarmoniX AFM | Delivering precise property maps in real time and with high resolution. Effective in the characterization of soft materials, thin films, small particles or domain within a bulk solid | Higher cost | [101] |
Matrix | Filler | Properties | Information Provided by TEM | Ref |
---|---|---|---|---|
Polyimide | SWCNT | Conductive and electrical properties | Degree of dispersion and size diameter (2–20 nm) | [105] |
Epoxy resin | ZrW2O8 nano-rods | Low coefficient thermal expansion and enhanced tensile properties | Degree of dispersion of filler | [106] |
Polyurethane | ABTA/AlN nanoparticles | Hydrophobicity and corrosion resistance against chloride | Degree of dispersion | [107] |
Polyimide | Ni tethered graphene | Magnetic responsive nanocomposites | Degree of alignment | [108] |
Polyaniline | Li0.35Zn0.3Fe2.35O4 nanoparticles | Enhanced microwave absorption | Degree of crystallinity, size and lattice spacing | [109] |
Matrix | Filler | Information Provided by XRD | Ref |
---|---|---|---|
Epoxy resin | ZnFe2O4 nanopowder | Crystallographic data | [122] |
Epoxy resin | Fe3O4 nanoparticles | Crystallographic data | [123] |
PANI | Li0.35Zn0.3Fe2.35O4 nanoparticles | Crystallographic data Crystallinity and purity of filler Homogeneous dispersion | [109] |
PVA | ZnS nanoparticles | Crystallographic data Homogenous dispersion Crystallinity of filler | [124] |
PANI | Fe3O4 and CoFe2O4 magnetic nanoparticles | Crystallographic data Homogenous dispersion | [125] |
Epoxy resin | ZrO2 and Y2O3 nanoparticles | Crystallographic data Homogenous dispersion Structural information | [126] |
Characterization Technique | Information Provided by the Technique | Ref |
---|---|---|
Computational modelling | Prediction of potential properties of nanocomposite | [93] |
AFM | Images of surface morphology of nanocomposite | [94] |
TEM | Structural arrangement of nanocomposite | [94,104,105] |
Raman Spectroscopy | Structural composition of nanocomposite about covalent binding between organic and inorganic components | [112] |
DSC and TGA | Thermal behavior of nanocomposite | [84,85,115] |
X-ray Diffraction | Composition and degree of crystallinity of nanocomposite | [121,123,124,125] |
Application of Nanocomposite | Polymer Matrix | Reinforcement | Properties | Ref |
---|---|---|---|---|
EMI shielding | PVDF | Fe3O4/carbon | Lightweight | [131] |
PLA | Ag | Multiple scattering | [130] | |
Epoxy resin | Iron, cobalt, nickel, and iron oxide | High strength and non-heavy | [128] | |
PPy | Ba0.6Sr0.4Fe12O19 | Low-cost and resistant | [132] | |
PAN and PU | Ni-Co | Intrinsic conductivity and magnetism | [129] | |
PLAUs | Fe3O4 | Shape recovery in a magnetic field | [134] | |
Epoxy resin | CNTs | High resistance | [135] | |
Epoxy resin | EDFe3O4-CNTs/rGF | High EMISE value | [136] | |
Coatings and paints | PANI | CoFe2O4 | Anticorrosive properties | [139] |
PU | MHAPs | Anticorrosive properties | [140] | |
Epoxy-PANI | GONs | Anticorrosion and antifouling properties | [141] | |
P(poly(ethylene glycol) methyl ether methacrylate-co-glycidyl methacrylate) | Fe3O4 | Antifrosting property | [142] | |
PVDF-HFP | SiO2/CNTs | Anti-icing and superhydrophobic properties | [143] | |
SHM | PMDS | PZT | Superior piezoelectric behavior | [146] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Fierro, D.; Bustamante-Torres, M.; Bravo-Plascencia, F.; Esquivel-Lozano, A.; Ruiz, J.-C.; Bucio, E. Recent Trends in Magnetic Polymer Nanocomposites for Aerospace Applications: A Review. Polymers 2022, 14, 4084. https://doi.org/10.3390/polym14194084
Romero-Fierro D, Bustamante-Torres M, Bravo-Plascencia F, Esquivel-Lozano A, Ruiz J-C, Bucio E. Recent Trends in Magnetic Polymer Nanocomposites for Aerospace Applications: A Review. Polymers. 2022; 14(19):4084. https://doi.org/10.3390/polym14194084
Chicago/Turabian StyleRomero-Fierro, David, Moises Bustamante-Torres, Francisco Bravo-Plascencia, Aylin Esquivel-Lozano, Juan-Carlos Ruiz, and Emilio Bucio. 2022. "Recent Trends in Magnetic Polymer Nanocomposites for Aerospace Applications: A Review" Polymers 14, no. 19: 4084. https://doi.org/10.3390/polym14194084
APA StyleRomero-Fierro, D., Bustamante-Torres, M., Bravo-Plascencia, F., Esquivel-Lozano, A., Ruiz, J. -C., & Bucio, E. (2022). Recent Trends in Magnetic Polymer Nanocomposites for Aerospace Applications: A Review. Polymers, 14(19), 4084. https://doi.org/10.3390/polym14194084