Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications
Abstract
:1. Introduction
2. Mechanisms of the Temperature-Induced Transition of TRPBCs
2.1. TRPBCs with Critical Solution Temperatures
2.2. TRPBCs with Tg
3. Fabrication of TRPBC Coatings
4. Methods for the Determination of Transitions in TRPBC Coatings
5. Advanced Biomedical Applications of TRPBCs
5.1. Antibacterial TRPBCs
5.2. TRPBCs for Cell Culture, Cell Separation, and Temperature-Stimulated Cell and Tissue Detachment
5.3. TRPBCs for Temperature-Controlled Protein Adsorption
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Stetsyshyn, Y.; Raczkowska, J.; Harhay, K.; Gajos, K.; Melnyk, Y.; Dąbczyński, P.; Shevtsova, T.; Budkowski, A. Temperature-Responsive and Multi-Responsive Grafted Polymer Brushes with Transitions Based on Critical Solution Temperature: Synthesis, Properties, and Applications. Colloid. Polym. Sci. 2020, 299, 363–383. [Google Scholar] [CrossRef]
- Brunato, S.; Mastrotto, F.; Bellato, F.; Garofalo, M.; Göddenhenrich, T.; Mantovani, G.; Alexander, C.; Gross, S.; Salmaso, S.; Caliceti, P. Thermosensitive “Smart” Surfaces for Biorecognition Based Cell Adhesion and Controlled Detachment. Macromol. Biosci. 2021, 21, 2000277. [Google Scholar] [CrossRef]
- Azzaroni, O.; Szleifer, I. Polymer and Biopolymer Brushes: For Materials Science and Biotechnology; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–780. [Google Scholar]
- Peng, S.; Bhushan, B. Smart Polymer Brushes and Their Emerging Applications. RSC Adv. 2012, 2, 8557–8578. [Google Scholar] [CrossRef]
- Budkowski, A.; Klein, J.; Fetters, L.J. Brush Formation by Symmetric and Highly Asymmetric Diblock Copolymers at Homopolymer Interfaces. Macromolecules 1995, 28, 8571–8578. [Google Scholar] [CrossRef]
- Li, Z.; Tang, M.; Liang, S.; Zhang, M.; Biesold, G.M.; He, Y.; Hao, S.M.; Choi, W.; Liu, Y.; Peng, J.; et al. Bottlebrush Polymers: From Controlled Synthesis, Self-Assembly, Properties to Applications. Prog. Polym. Sci. 2021, 116, 101387. [Google Scholar] [CrossRef]
- Xia, Y.; Adibnia, V.; Huang, R.; Murschel, F.; Faivre, J.; Xie, G.; Olszewski, M.; De Crescenzo, G.; Qi, W.; He, Z.; et al. Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angew. Chem. Int. Ed. 2019, 58, 1308–1314. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.; He, M.; Su, Y.; Zhao, X.; Elimelech, M.; Jiang, Z. Antifouling Membranes for Sustainable Water Purification: Strategies and Mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924. [Google Scholar] [CrossRef]
- Mei, H.; Mah, A.H.; Hu, Z.; Li, Y.; Terlier, T.; Stein, G.E.; Verduzco, R. Rapid Processing of Bottlebrush Coatings through UV-Induced Cross-Linking. ACS Macro Lett. 2020, 9, 1135–1142. [Google Scholar] [CrossRef]
- Mah, A.H.; Mei, H.; Basu, P.; Laws, T.S.; Ruchhoeft, P.; Verduzco, R.; Stein, G.E. Swelling Responses of Surface-Attached Bottlebrush Polymer Networks. Soft Matter 2018, 14, 6728–6736. [Google Scholar] [CrossRef] [Green Version]
- Mei, H.; Laws, T.S.; Mahalik, J.P.; Li, J.; Mah, A.H.; Terlier, T.; Bonnesen, P.; Uhrig, D.; Kumar, R.; Stein, G.E.; et al. Entropy and Enthalpy Mediated Segregation of Bottlebrush Copolymers to Interfaces. Macromolecules 2019, 52, 8910–8922. [Google Scholar] [CrossRef]
- Miyagi, K.; Mei, H.; Terlier, T.; Stein, G.E.; Verduzco, R. Analysis of Surface Segregation of Bottlebrush Polymer Additives in Thin Film Blends with Attractive Intermolecular Interactions. Macromolecules 2020, 53, 6720–6730. [Google Scholar] [CrossRef]
- Roeven, E.; Kuzmyn, A.R.; Scheres, L.; Baggerman, J.; Smulders, M.M.J.; Zuilhof, H. PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routes. Langmuir 2020, 36, 10187–10199. [Google Scholar] [CrossRef]
- Gao, Q.; Yu, M.; Su, Y.; Xie, M.; Zhao, X.; Li, P.; Ma, P.X. Rationally Designed Dual Functional Block Copolymers for Bottlebrush-like Coatings: In Vitro and in Vivo Antimicrobial, Antibiofilm, and Antifouling Properties. Acta Biomater. 2017, 51, 112–124. [Google Scholar] [CrossRef]
- Nakayama, M.; Okano, T.; Winnik, F. Poly(N-Isopropylacrylamide)-Based Smart Surfaces for Cell Sheet Tissue Engineering. Mater. Matters 2010, 5, 5. [Google Scholar]
- Kano, K.; Yamato, M.; Okano, T. Ectopic Transplantation of Hepatocyte Sheets Fabricated with Temperature-Responsive Culture Dishes. Hepatol. Res. 2008, 38, 1140–1147. [Google Scholar] [CrossRef]
- Wei, T.; Tang, Z.; Yu, Q.; Chen, H. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS Appl. Mater. Interfaces 2017, 9, 37511–37523. [Google Scholar] [CrossRef]
- Li, X.; Wu, B.; Chen, H.; Nan, K.; Jin, Y.; Sun, L.; Wang, B. Recent Developments in Smart Antibacterial Surfaces to Inhibit Biofilm Formation and Bacterial Infections. J. Mater. Chem. B 2018, 6, 4274–4292. [Google Scholar] [CrossRef]
- Huber, D.L.; Manginell, R.P.; Samara, M.A.; Kim, B.I.I.; Bunker, B.C. Programmed Adsorption and Release of Proteins in a Microfluidic Device. Science 2003, 301, 352–354. [Google Scholar] [CrossRef]
- Wei, T.; Qu, Y.; Zou, Y.; Zhang, Y.; Yu, Q. Exploration of Smart Antibacterial Coatings for Practical Applications. Curr. Opin. Chem. Eng. 2021, 34, 100727. [Google Scholar] [CrossRef]
- Elashnikov, R.; Ulbrich, P.; Vokatá, B.; Pavlíčková, V.S.; Švorčík, V.; Lyutakov, O.; Rimpelová, S. Physically Switchable Antimicrobial Surfaces and Coatings: General Concept and Recent Achievements. Nanomaterials 2021, 11, 3083. [Google Scholar] [CrossRef]
- Chen, C.; Atif, M.; He, K.; Zhang, M.; Chen, L.; Wang, Y. A Binary Mixed Polymer Brush Coating with Adjusted Hydrophobic Property to Control Protein Adsorption. Mater. Adv. 2021, 2, 2120–2131. [Google Scholar] [CrossRef]
- Psarra, E.; König, U.; Ueda, Y.; Bellmann, C.; Janke, A.; Bittrich, E.; Eichhorn, K.J.; Uhlmann, P. Nanostructured Biointerfaces: Nanoarchitectonics of Thermoresponsive Polymer Brushes Impact Protein Adsorption and Cell Adhesion. ACS Appl. Mater. Interfaces 2015, 7, 12516–12529. [Google Scholar] [CrossRef]
- Kikuchi, A.; Okano, T. Intelligent Thermoresponsive Polymeric Stationary Phases for Aqueous Chromatography of Biological Compounds. Prog. Polym. Sci. 2002, 27, 1165–1193. [Google Scholar] [CrossRef]
- Awsiuk, K.; Stetsyshyn, Y.; Raczkowska, J.; Lishchynskyi, O.; Dabczyński, P.; Kostruba, A.; Ohar, H.; Shymborska, Y.; Nastyshyn, S.; Budkowski, A. Temperature-Controlled Orientation of Proteins on Temperature-Responsive Grafted Polymer Brushes: Poly(Butyl Methacrylate) vs Poly(Butyl Acrylate): Morphology, Wetting, and Protein Adsorption. Biomacromolecules 2019, 20, 2185–2197. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Trindade, G.F.; Hicks, J.M.; Potts, J.C.; Rahman, R.; Hague, R.J.M.; Amabilino, D.B.; Pérez-García, L.; Rawson, F.J. Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles. J. Colloid Interface Sci. 2021, 587, 150–161. [Google Scholar] [CrossRef]
- Idota, N.; Ebara, M.; Kotsuchibashi, Y.; Narain, R.; Aoyagi, T. Novel Temperature-Responsive Polymer Brushes with Carbohydrate Residues Facilitate Selective Adhesion and Collection of Hepatocytes. Sci. Technol. Adv. Mater. 2012, 13, 064206. [Google Scholar] [CrossRef]
- Li, L.; Wu, J.; Gao, C. Gradient Immobilization of a Cell Adhesion RGD Peptide on Thermal Responsive Surface for Regulating Cell Adhesion and Detachment. Colloid. Surf. B. Biointerfaces 2011, 85, 12–18. [Google Scholar] [CrossRef]
- Desseaux, S.; Klok, H.A. Temperature-Controlled Masking/Unmasking of Cell-Adhesive Cues with Poly(Ethylene Glycol) Methacrylate Based Brushes. Biomacromolecules 2014, 15, 3859–3865. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Ferris, R.; Zhang, J.; Ducker, R.; Zauscher, S. Stimulus-Responsive Polymer Brushes on Surfaces: Transduction Mechanisms and Applications. Prog. Polym. Sci. 2010, 35, 94–112. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Raczkowska, J.; Lishchynskyi, O.; Awsiuk, K.; Zemla, J.; Dąbczyński, P.; Kostruba, A.; Harhay, K.; Ohar, H.; Orzechowska, B.; et al. Glass Transition in Temperature-Responsive Poly(Butyl Methacrylate) Grafted Polymer Brushes. Impact of Thickness and Temperature on Wetting, Morphology, and Cell Growth. J. Mater. Chem. B 2018, 6, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
- Barker, J.A.; Fock, W. Theory of upper and lower critical solution temperatures. Discuss. Faraday Soc. 1953, 15, 188–195. [Google Scholar] [CrossRef]
- Seuring, J.; Agarwal, S. Polymers with Upper Critical Solution Temperature in Aqueous Solution: Unexpected Properties from Known Building Blocks. ACS Macro Lett. 2013, 2, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.T.; Haddow, P.; Kirton, S.B.; Mcauley, W.J.; Cook, M.T.; Haddow, P.; Kirton, S.B.; Mcauley, W.J. Polymers Exhibiting Lower Critical Solution Temperatures as a Route to Thermoreversible Gelators for Healthcare. Adv. Funct. Mater. 2021, 31, 2008123. [Google Scholar] [CrossRef]
- Van Krevelen, D.W.; Te Nijenhuis, K. Properties of Polymers; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Kostruba, A.; Stetsyshyn, Y.; Mayevska, S.; Yakovlev, M.; Vankevych, P.; Nastishin, Y.; Kravets, V. Composition, Thickness and Properties of Grafted Copolymer Brush Coatings Determined by Ellipsometry: Calculation and Prediction. Soft Matter 2018, 14, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Weber, C.; Schubert, U.S.; Hoogenboom, R. Thermoresponsive Polymers with Lower Critical Solution Temperature: From Fundamental Aspects and Measuring Techniques to Recommended Turbidimetry Conditions. Mater. Horiz. 2017, 4, 109–116. [Google Scholar] [CrossRef]
- Xue, X.; Thiagarajan, L.; Braim, S.; Saunders, B.R.; Shakesheff, K.M.; Alexander, C. Upper Critical Solution Temperature Thermo-Responsive Polymer Brushes and a Mechanism for Controlled Cell Attachment. J. Mater. Chem. B 2017, 5, 4926–4933. [Google Scholar] [CrossRef]
- Jia, X.; Ji, H.; Zhang, G.; Xing, J.; Shen, S.; Zhou, X.; Sun, S.; Wu, X.; Yu, D.; Wyman, I. Smart Self-Cleaning Membrane via the Blending of an Upper Critical Solution Temperature Diblock Copolymer with PVDF. ACS Appl. Mater. Interfaces 2021, 13, 38712–38721. [Google Scholar] [CrossRef]
- Zhou, Q.; Palanisamy, A.; Albright, V.; Sukhishvili, S.A. Enzymatically Degradable Star Polypeptides with Tunable UCST Transitions in Solution and within Layer-by-Layer Films. Polym. Chem. 2018, 9, 4979–4983. [Google Scholar] [CrossRef]
- Niskanen, J.; Tenhu, H. How to Manipulate the Upper Critical Solution Temperature (UCST)? Polym. Chem. 2016, 8, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Albright, V.; Palanisamy, A.; Zhou, Q.; Selin, V.; Sukhishvili, S.A. Functional Surfaces through Controlled Assemblies of Upper Critical Solution Temperature Block and Star Copolymers. Langmuir 2019, 35, 10677–10688. [Google Scholar] [CrossRef]
- Aseyev, V.; Tenhu, H.; Winnik, F.M. Non-Ionic Thermoresponsive Polymers in Water in Self Organized Nanostructures of Amphiphilic Block Copolymers II, Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 29–89. [Google Scholar]
- Sanchez, I.C.; Lacombe, R.H. Statistical Thermodynamics of Polymer Solutions; John Wiley & SONS, Inc.: New York, NY, USA, 2000; Volume 1. [Google Scholar]
- Chen, G.; Hoffman, A.S. Graft Copolymers That Exhibit Temperature-Induced Phase Transitions over a Wide Range of pH. Nature 1995, 373, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Feng, L.; Wang, S.; Sun, T.; Song, W.; Jiang, W.; Jiang, L.; Song, W.; Jiang, W.; Jiang, L.; et al. Dual-Responsive Surfaces That Switch between Superhydrophilicity and Superhydrophobicity. Adv. Mater. 2006, 18, 432–436. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Zemla, J.; Zolobko, O.; Fornal, K.; Budkowski, A.; Kostruba, A.; Donchak, V.; Harhay, K.; Awsiuk, K.; Rysz, J.; et al. Temperature and pH Dual-Responsive Coatings of Oligoperoxide-Graft-Poly(N-Isopropylacrylamide): Wettability, Morphology, and Protein Adsorption. J. Colloid. Interface Sci. 2012, 387, 95–105. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Fornal, K.; Raczkowska, J.; Zemla, J.; Kostruba, A.; Ohar, H.; Ohar, M.; Donchak, V.; Harhay, K.; Awsiuk, K.; et al. Temperature and pH Dual-Responsive POEGMA-Based Coatings for Protein Adsorption. J. Colloid. Interface Sci. 2013, 411, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Shymborska, Y.; Stetsyshyn, Y.; Raczkowska, J.; Awsiuk, K.; Ohar, H.; Budkowski, A. Impact of the Various Buffer Solutions on the Temperature-responsive Properties of POEGMA-grafted Brush Coatings. Colloid. Polym. Sci. 2022, 300, 487–495. [Google Scholar] [CrossRef]
- Lutz, J.F.; Weichenhan, K.; Akdemir, Ö.; Hoth, A. About the Phase Transitions in Aqueous Solutions of Thermoresponsive Copolymers and Hydrogels Based on 2-(2-Methoxyethoxy)Ethyl Methacrylate and Oligo(Ethylene Glycol) Methacrylate. Macromolecules 2007, 40, 2503–2508. [Google Scholar] [CrossRef]
- Zhuang, P.; Dirani, A.; Glinel, K.; Jonas, A.M. Temperature Dependence of the Surface and Volume Hydrophilicity of Hydrophilic Polymer Brushes. Langmuir 2016, 32, 3433–3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Wei, H.; Mao, J.; Wang, D.; Yang, M.; Bo, S.; Ji, X. Synthesis and Responsive Behavior of Poly(N,N-Dimethylaminoethyl Methacrylate) Brushes Grafted on Silica Nanoparticles and Their Quaternized Derivatives. Polymers 2012, 53, 2074–2084. [Google Scholar] [CrossRef]
- Raczkowska, J.; Stetsyshyn, Y.; Awsiuk, K.; Zemła, J.; Kostruba, A.; Harhay, K.; Marzec, M.; Bernasik, A.; Lishchynskyi, O.; Ohar, H.; et al. Temperature-Responsive Properties of Poly(4-Vinylpyridine) Coatings: Influence of Temperature on the Wettability, Morphology, and Protein Adsorption. RSC Adv. 2016, 6, 87469–87477. [Google Scholar] [CrossRef]
- Raczkowska, J.; Ohar, M.; Stetsyshyn, Y.; Zemła, J.; Awsiuk, K.; Rysz, J.; Fornal, K.; Bernasik, A.; Ohar, H.; Fedorova, S.; et al. Temperature-Responsive Peptide-Mimetic Coating Based on Poly(N-Methacryloyl-l-Leucine): Properties, Protein Adsorption and Cell Growth. Colloid. Surf. B Biointerfaces 2014, 118, 270–279. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, J.; Sun, J.; He, G.; Li, Y.; Zhang, G. Preparation of Thermoresponsive Polymers Bearing Amino Acid DiamideDerivatives via RAFT Polymerization. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 3573–3586. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Raczkowska, J.; Budkowski, A.; Kostruba, A.; Harhay, K.; Ohar, H.; Awsiuk, K.; Bernasik, A.; Ripak, N.; ZemŁa, J. Synthesis and Postpolymerization Modification of Thermoresponsive Coatings Based on Pentaerythritol Monomethacrylate: Surface Analysis, Wettability, and Protein Adsorption. Langmuir 2015, 31, 9675–9683. [Google Scholar] [CrossRef] [PubMed]
- Seuring, J.; Bayer, F.M.; Huber, K.; Agarwal, S. Upper Critical Solution Temperature of Poly(N-Acryloyl Glycinamide) in Water: A Concealed Property. Macromolecules 2012, 45, 374–384. [Google Scholar] [CrossRef]
- Plunkett, K.N.; Zhu, X.; Moore, J.S.; Leckband, D.E. PNIPAM Chain Collapse Depends on the Molecular Weight and Grafting Density. Langmuir 2006, 22, 4259–4266. [Google Scholar] [CrossRef] [PubMed]
- Morgese, G.; Shaghasemi, S.; Causin, V.; Zenobi-Wong, M.; Ramakrishna, S.N.; Reimhult, E.; Benetti, E.M. Next-Generation Polymer Shells for Inorganic Nanoparticles Are Highly Compact, Ultra-Dense, and Long-Lasting Cyclic Brushes. Angew. Chem. Int. Ed. 2017, 56, 4507–4511. [Google Scholar] [CrossRef]
- Morgese, G.; Trachsel, L.; Romio, M.; Divandari, M.; Ramakrishna, S.N.; Benetti, E.M. Topological Polymer Chemistry Enters Surface Science: Linear versus Cyclic Polymer Brushes. Angew. Chem. Int. Ed. 2016, 55, 15583–15588. [Google Scholar] [CrossRef]
- Flemming, P.; Fery, A.; Münch, A.S.; Uhlmann, P. Does Chain Confinement Affect Thermoresponsiveness? A Comparative Study of the LCST and Induced UCST Transition of Tailored Grafting-to Polyelectrolyte Brushes. Macromolecules 2022, 55, 6775–6786. [Google Scholar] [CrossRef]
- Koenig, M.; Rodenhausen, K.B.; Rauch, S.; Bittrich, E.; Eichhorn, K.J.; Schubert, M.; Stamm, M.; Uhlmann, P. Salt Sensitivity of the Thermoresponsive Behavior of PNIPAAm Brushes. Langmuir 2018, 34, 2448–2454. [Google Scholar] [CrossRef]
- Otulakowski, Ł.; Kasprów, M.; Strzelecka, A.; Dworak, A.; Trzebicka, B. Thermal Behaviour of Common Thermoresponsive Polymers in Phosphate Buffer and in Its Salt Solutions. Polymers 2020, 13, 90. [Google Scholar] [CrossRef]
- Shevtsova, T.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Donchak, V.; Harhay, K.; Korolko, S.; Budkowski, A.; Stetsyshyn, Y. Temperature-Responsive Hybrid Nanomaterials Based on Modified Halloysite Nanotubes Uploaded with Silver Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128525. [Google Scholar] [CrossRef]
- Hill, A.J.; Tant, M.R. The Structure and Properties of Glassy Polymers (ACS Symposium Series, 710); American Chemical Society: Washington, DC, USA, 1999. [Google Scholar]
- Stetsyshyn, Y.; Raczkowska, J.; Budkowski, A.; Awsiuk, K.; Kostruba, A.; Nastyshyn, S.; Harhay, K.; Lychkovskyy, E.; Ohar, H.; Nastishin, Y. Cholesterol-Based Grafted Polymer Brushes as Alignment Coating with Temperature-Tuned Anchoring for Nematic Liquid Crystals. Langmuir 2016, 32, 11029–11038. [Google Scholar] [CrossRef] [PubMed]
- Raczkowska, J.; Stetsyshyn, Y.; Awsiuk, K.; Lekka, M.; Marzec, M.; Harhay, K.; Ohar, H.; Ostapiv, D.; Sharan, M.; Yaremchuk, I.; et al. Temperature-Responsive Grafted Polymer Brushes Obtained from Renewable Sources with Potential Application as Substrates for Tissue Engineering. ApSS 2017, 407, 546–554. [Google Scholar] [CrossRef]
- McKeen, L.W. Fatigue and Tribological Properties of Plastics and Elastomers; William Andrew: Amsterdam, The Netherlands, 2016; pp. 125–170. [Google Scholar]
- Shibaev, V. Liquid Crystalline Polymers. Polym. Sci. A Compr. 2012, 1, 259–285. [Google Scholar]
- Yamamoto, S.; Tsujii, Y.; Fukuda, T. Glass Transition Temperatures of High-Density Poly(Methyl Methacrylate) Brushes. Macromolecules 2002, 35, 6077–6079. [Google Scholar] [CrossRef]
- Zuo, B.; Zhang, S.; Niu, C.; Zhou, H.; Sun, S.; Wang, X. Grafting Density Dominant Glass Transition of Dry Polystyrene Brushes. Soft Matter 2017, 13, 2426–2436. [Google Scholar] [CrossRef] [PubMed]
- Tsui, O.K.C.; Russell, T.P.; Hawker, C.J. Effect of Interfacial Interactions on the Glass Transition of Polymer Thin Films. Macromolecules 2001, 34, 5535–5539. [Google Scholar] [CrossRef]
- Kong, B.; Lee, J.K.; Choi, I.S. Surface-Initiated, Ring-Opening Metathesis Polymerization: Formation of Diblock Copolymer Brushes and Solvent-Dependent Morphological Changes. Langmuir 2007, 23, 6761–6765. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; He, B.; Zhang, Y.; Zhang, J.; Liu, S.; Zhou, F. Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling. ACS Appl. Mater. Interfaces 2019, 11, 39171–39178. [Google Scholar] [CrossRef]
- Huang, X.; Wirth, M.J. Surface-Initiated Radical Polymerization on Porous Silica. Anal. Chem. 1997, 69, 4577–4580. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ejaz, M.; Tsujii, Y.; Fukuda, T. Surface Interaction Forces of Well-Defined, High-Density Polymer Brushes Studied by Atomic Force Microscopy. 2. Effect of Graft Density. Macromolecules 2000, 33, 5608–5612. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Miller, P.J.; Shukla, N.; Immaraporn, B.; Gelman, A.; Luokala, B.B.; Siclovan, T.M.; Kickelbick, G.; Vallant, T.; Hoffmann, H.; et al. Polymers at Interfaces: Using Atom Transfer Radical Polymerization in the Controlled Growth of Homopolymers and Block Copolymers from Silicon Surfaces in the Absence of Untethered Sacrificial Initiator. MaMol 1999, 32, 8716–8724. [Google Scholar] [CrossRef]
- Siegwart, D.J.; Oh, J.K.; Matyjaszewski, K. ATRP in the Design of Functional Materials for Biomedical Applications. Prog. Polym. Sci. 2012, 37, 18–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ślusarczyk, K.; Flejszar, M.; Chmielarz, P. Less Is More: A Review of ΜL-Scale of SI-ATRP in Polymer Brushes Synthesis. Polymers 2021, 233, 124212. [Google Scholar] [CrossRef]
- Zoppe, J.O.; Ataman, N.C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H.A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017, 117, 1105–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, C.L.; Lowe, A.B. Aqueous RAFT Polymerization: Recent Developments in Synthesis of Functional Water-Soluble (Co)Polymers with Controlled Structures. Acc. Chem. Res. 2004, 37, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Moad, G. RAFT Polymerization to Form Stimuli-Responsive Polymers. Polym. Chem. 2016, 8, 177–219. [Google Scholar] [CrossRef]
- RAFT: Choosing the Right Agent to Achieve Controlled Polymerization. Available online: https://www.sigmaaldrich.com/PL/pl/technical-documents/technical-article/materials-science-and-engineering/polymer-synthesis/raft-polymerization (accessed on 29 August 2022).
- Stenzel, M.H.; Zhang, L.; Huck, W.T.S. Temperature-Responsive Glycopolymer Brushes Synthesized via RAFT Polymerization Using the Z-Group Approach. Macromol. Rapid Commun. 2006, 27, 1121–1126. [Google Scholar] [CrossRef]
- Boschmann, D.; Mänz, M.; Pöppler, A.C.; Sörensen, N.; Vana, P. Tracing Arm-Growth Initiation in Z-RAFT Star Polymerization by NMR: The Impact of the Leaving R-Group on Star Topology. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 7280–7286. [Google Scholar] [CrossRef]
- Li, M.; Fromel, M.; Ranaweera, D.; Rocha, S.; Boyer, C.; Pester, C.W. SI-PET-RAFT: Surface-Initiated Photoinduced Electron Transfer-Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Macro Lett. 2019, 8, 374–380. [Google Scholar] [CrossRef]
- Ng, G.; Judzewitsch, P.; Li, M.; Pester, C.W.; Jung, K.; Boyer, C.; Ng, G.; Judzewitsch, P.; Jung, K.; Boyer, C.; et al. Synthesis of Polymer Brushes Via SI-PET-RAFT for Photodynamic Inactivation of Bacteria. Macromol. Rapid Commun. 2021, 42, 2100106. [Google Scholar] [CrossRef]
- Kostruba, A.; Ohar, M.; Kulyk, B.; Zolobko, O.; Stetsyshyn, Y. Surface Modification by Grafted Sensitive Polymer Brushes: An Ellipsometric Study of Their Properties. Appl. Surf. Sci. 2013, 276, 340–346. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Kostruba, A.; Harhay, K.; Donchak, V.; Ohar, H.; Savaryn, V.; Kulyk, B.; Ripak, L.; Nastishin, Y.A. Multifunctional Cholesterol-Based Peroxide for Modification of Amino-Terminated Surfaces: Synthesis, Structure and Characterization of Grafted Layer. Appl. Surf. Sci. 2015, 347, 299–306. [Google Scholar] [CrossRef]
- Umemoto, Y.; Kim, S.H.; Advincula, R.C.; Tanaka, K.; Usuiy, H. Effect of Self-Assembled Monolayer Modification on Indium-Tin Oxide Surface for Surface-Initiated Vapor Deposition Polymerization of Carbazole Thin Films. Jpn. J. Appl. Phys. 2010, 49, 04DK21. [Google Scholar] [CrossRef]
- Guo, W.; Xiong, L.; Reese, C.M.; Amato, D.V.; Thompson, B.J.; Logan, P.K.; Patton, D.L. Post-Polymerization Modification of Styrene–Maleic Anhydride Copolymer Brushes. Polym. Chem. 2017, 8, 6778–6785. [Google Scholar] [CrossRef]
- Nastyshyn, S.; Raczkowska, J.; Stetsyshyn, Y.; Orzechowska, B.; Bernasik, A.; Shymborska, Y.; Brzychczy-Włoch, M.; Gosiewski, T.; Lishchynskyi, O.; Ohar, H.; et al. Non-Cytotoxic, Temperature-Responsive and Antibacterial POEGMA Based Nanocomposite Coatings with Silver Nanoparticles. RSC Adv. 2020, 10, 10155–10166. [Google Scholar] [CrossRef]
- Raczkowska, J.; Stetsyshyn, Y.; Awsiuk, K.; Brzychczy-Włoch, M.; Gosiewski, T.; Jany, B.; Lishchynskyi, O.; Shymborska, Y.; Nastyshyn, S.; Bernasik, A.; et al. “Command” Surfaces with Thermo-Switchable Antibacterial Activity. Mater. Sci. Eng. C 2019, 103, 109806. [Google Scholar] [CrossRef]
- Bhandary, D.; Benková, Z.; Cordeiro, M.N.D.S.; Singh, J.K. Molecular Dynamics Study of Wetting Behavior of Grafted Thermo-Responsive PNIPAAm Brushes. Soft Matter. 2016, 12, 3093–3102. [Google Scholar] [CrossRef]
- Guilizzoni, M. Drop Shape Visualization and Contact Angle Measurement on Curved Surfaces. J. Colloid Interface Sci. 2011, 364, 230–236. [Google Scholar] [CrossRef]
- Bittrich, E.; Burkert, S.; Müller, M.; Eichhorn, K.J.; Stamm, M.; Uhlmann, P. Temperature-Sensitive Swelling of Poly(N-Isopropylacrylamide) Brushes with Low Molecular Weight and Grafting Density. Langmuir 2012, 28, 3439–3448. [Google Scholar] [CrossRef]
- Varma, S.; Bureau, L.; Débarre, D. The Conformation of Thermoresponsive Polymer Brushes Probed by Optical Reflectivity. Langmuir 2016, 32, 3152–3163. [Google Scholar] [CrossRef] [Green Version]
- Kostruba, A.; Stetsyshyn, Y.; Vlokh, R. Method for determination of the parameters of transparent ultrathin films deposited on transparent substrates under conditions of low optical contrast. Appl. Opt. 2015, 54, 6208–6216. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Sun, X.; Tai, X.; Wang, G.; Liu, X. Synthesis of Hybrid Silica Nanoparticles Grafted with Thermoresponsive Poly(Ethylene Glycol) Methyl Ether Methacrylate via AGET-ATRP. RSC Adv. 2015, 5, 17194–17201. [Google Scholar] [CrossRef] [Green Version]
- Lisuzzo, L.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Stetsyshyn, Y. Stability of Halloysite, Imogolite, and Boron Nitride Nanotubes in Solvent Media. Appl. Sci. 2018, 8, 1068. [Google Scholar] [CrossRef] [Green Version]
- Kurzhals, S.; Gal, N.; Zirbs, R.; Reimhult, E. Aggregation of thermoresponsive core-shell nanoparticles: Influence of particle concentration, dispersant molecular weight and grafting. J. Coll. Interf. Sci. 2017, 500, 321–332. [Google Scholar] [CrossRef] [PubMed]
- van Megen, W.; Pusey, P.N. Dynamic Light-Scattering Study of the Glass Transition in a Colloidal Suspension. Phys. Rev. A 1991, 43, 5429. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.L.; Devanand, K.; Jamieson, A.M.; Simha, R. Dynamic Light Scattering Study of Poly(Di-n-Butyl Itaconate) in the Glass Transition Region. Polymers. 1991, 32, 1928–1934. [Google Scholar] [CrossRef]
- Nastyshyn, S.; Pop-Georgievski, O.; Stetsyshyn, Y.; Budkowski, A.; Raczkowska, J.; Hruby, M.; Lobaz, V. Protein Corona of SiO2 Nanoparticles with Grafted Thermoresponsive Copolymers: Calorimetric Insights on Factors Affecting Entropy vs. Enthalpy-Driven Associations. Appl. Surf. Sci. 2022, 601, 154201. [Google Scholar] [CrossRef]
- Willinger, M.; Reimhult, E. Thermoresponsive Nanoparticles with Cyclic-Polymer-Grafted Shells Are More Stable than with Linear-Polymer-Grafted Shells: Effect of Polymer Topology, Molecular Weight, and Core Size. J. Phys. Chem. B 2021, 125, 7009–7023. [Google Scholar] [CrossRef] [PubMed]
- Savin, D.A.; Pyun, J.; Patterson, G.D.; Kowalewski, T.; Matyjaszewski, K. Synthesis and Characterization of Silica-Graft-Polystyrene Hybrid Nanoparticles: Effect of Constraint on the Glass-Transition Temperature of Spherical Polymer Brushes. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 2667–2676. [Google Scholar] [CrossRef]
- Askar, S.; Li, L.; Torkelson, J.M. Polystyrene-Grafted Silica Nanoparticles: Investigating the Molecular Weight Dependence of Glass Transition and Fragility Behavior. Macromolecules 2017, 50, 1589–1598. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, X.; Gu, Q.; Chen, W.; Sun, P.; Xue, G. Confinement-Induced Deviation of Chain Mobility and Glass Transition Temperature for Polystyrene/Au Nanoparticles. Macromolecules 2013, 46, 2292–2297. [Google Scholar] [CrossRef]
- Alharthi, S.; Grishkewich, N.; Berry, R.M.; Tam, K.C. Functional Cellulose Nanocrystals Containing Cationic and Thermo-Responsive Polymer Brushes. Carbohydr. Polym. 2020, 246, 116651. [Google Scholar] [CrossRef] [PubMed]
- Sidoli, U.; Tee, H.T.; Raguzin, I.; Mühldorfer, J.; Wurm, F.R.; Synytska, A. Thermo-Responsive Polymer Brushes with Side Graft Chains: Relationship Between Molecular Architecture and Underwater Adherence. Int. J. Mol. Sci. 2019, 20, 6295. [Google Scholar] [CrossRef] [Green Version]
- Prozeller, D.; Morsbach, S.; Landfester, K. Isothermal Titration Calorimetry as a Complementary Method for Investigating Nanoparticle–Protein Interactions. Nanoscale 2019, 11, 19265–19273. [Google Scholar] [CrossRef] [Green Version]
- Gal, N.; Schroffenegger, M.; Reimhult, E. Stealth Nanoparticles Grafted with Dense Polymer Brushes Display Adsorption of Serum Protein Investigated by Isothermal Titration Calorimetry. J. Phys. Chem. B 2018, 122, 5820–5834. [Google Scholar] [CrossRef]
- Jiang, Y.; Zheng, W.; Tran, K.; Kamilar, E.; Bariwal, J.; Ma, H.; Liang, H. Hydrophilic Nanoparticles That Kill Bacteria While Sparing Mammalian Cells Reveal the Antibiotic Role of Nanostructures. Nat. Commun. 2022, 13, 1–17. [Google Scholar] [CrossRef]
- Wang, Q.; Coffinier, Y.; Li, M.; Boukherroub, R.; Szunerits, S. Light-Triggered Release of Biomolecules from Diamond Nanowire Electrodes. Langmuir 2016, 32, 6515–6523. [Google Scholar] [CrossRef]
- Ista, L.K.; Mendez, S.; Lopez, G.P. Attachment and Detachment of Bacteria on Surfaces with Tunable and Switchable Wettability. Biofouling 2009, 26, 111–118. [Google Scholar] [CrossRef]
- Ista, L.K.; Pérez-Luna, V.H.; López, G.P. Surface-Grafted, Environmentally Sensitive Polymers for Biofilm Release. Appl. Environ. Microbiol. 1999, 65, 1603–1609. [Google Scholar] [CrossRef] [Green Version]
- Ista, L.K.; Mendez, S.; Pérez-Luna, V.H.; López, G.P. Synthesis of Poly(N-Isopropylacrylamide) on Initiator-Modified Self-Assembled Monolayers. Langmuir 2001, 17, 2552–2555. [Google Scholar] [CrossRef]
- Ista, L.K.; Callow, M.E.; Finlay, J.A.; Coleman, S.E.; Nolasco, A.C.; Simons, R.H.; Callow, J.A.; Lopez, G.P. Effect of Substratum Surface Chemistry and Surface Energy on Attachment of Marine Bacteria and Algal Spores. Appl. Environ. Microbiol. 2004, 70, 4151–4157. [Google Scholar] [CrossRef] [PubMed]
- Cunliffe, D.; De Las Heras Alarcón, C.; Peters, V.; Smith, J.R.; Alexander, C. Thermoresponsive Surface-Grafted Poly(N-Isopropylacrylamide) Copolymers: Effect of Phase Transitions on Protein and Bacterial Attachment. Langmuir 2003, 19, 2888–2899. [Google Scholar] [CrossRef]
- Choi, H.; Schulte, A.; Müller, M.; Park, M.; Jo, S.; Schönherr, H.; Choi, H.; Schulte, A.; Müller, M.; Schönherr, H.; et al. Drug Release from Thermo-Responsive Polymer Brush Coatings to Control Bacterial Colonization and Biofilm Growth on Titanium Implants. Adv. Healthc. Mater. 2021, 10, 2100069. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xu, Q.; Ye, Z.; Liu, H.; Lin, Q.; Nan, K.; Li, Y.; Wang, Y.; Qi, L.; Chen, H. Copolymer Brushes with Temperature-Triggered, Reversibly Switchable Bactericidal and Antifouling Properties for Biomaterial Surfaces. ACS Appl. Mater. Interfaces 2016, 8, 27207–27217. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, Y.; He, M.; Huang, Y.; Zhao, W.; Zhao, C.; Wang, Q.; Feng, Y.; He, M.; Zhao, W.; et al. Thermoresponsive Antibacterial Surfaces Switching from Bacterial Adhesion to Bacterial Repulsion. Macromol. Mater. Eng. 2018, 303, 1700590. [Google Scholar] [CrossRef]
- Shi, Z.Q.; Cai, Y.T.; Deng, J.; Zhao, W.F.; Zhao, C.S. Host-Guest Self-Assembly Toward Reversible Thermoresponsive Switching for Bacteria Killing and Detachment. ACS Appl. Mater. Interfaces 2016, 8, 23523–23532. [Google Scholar] [CrossRef]
- Wang, X.; Yan, S.; Song, L.; Shi, H.; Yang, H.; Luan, S.; Huang, Y.; Yin, J.; Khan, A.F.; Zhao, J. Temperature-Responsive Hierarchical Polymer Brushes Switching from Bactericidal to Cell Repellency. ACS Appl. Mater. Interfaces 2017, 9, 40930–40939. [Google Scholar] [CrossRef]
- Laloyaux, X.; Fautré, E.; Blin, T.; Purohit, V.; Leprince, J.; Jouenne, T.; Jonas, A.M.; Glinel, K. Temperature-Responsive Polymer Brushes Switching from Bactericidal to Cell-Repellent. Adv. Mater. 2010, 22, 5024–5028. [Google Scholar] [CrossRef]
- Nagase, K.; Kobayashi, J.; Okano, T. Temperature-Responsive Intelligent Interfaces for Biomolecular Separation and Cell Sheet Engineering. J. R. Soc. Interface 2009, 6, S293–S309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamoorthy, M.; Hakobyan, S.; Ramstedt, M.; Gautrot, J.E. Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings. Chem. Rev. 2014, 114, 10976–11026. [Google Scholar] [CrossRef]
- Kim, W.; Jung, J. Polymer Brush: A Promising Grafting Approach to Scaffolds for Tissue Engineering. BMB Rep. 2016, 49, 655. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.A.; Georgiou, T.K. Thermoresponsive Polymers for Biomedical Applications. Polymers 2011, 3, 1215–1242. [Google Scholar] [CrossRef] [Green Version]
- Quintana, R.; Gosa, M.; Jańczewski, D.; Kutnyanszky, E.; Vancso, G.J. Enhanced Stability of Low Fouling Zwitterionic Polymer Brushes in Seawater with Diblock Architecture. Langmuir 2013, 29, 10859–10867. [Google Scholar] [CrossRef] [PubMed]
- Nagase, K.; Okano, T.; Kanazawa, H. Poly(N-isopropylacrylamide) based thermoresponsive polymer brushes for bioseparation, cellular tissue fabrication, and nano actuators. Nano-Structures & Nano-Objects 2018, 16, 9–23. [Google Scholar]
- Yamada, N.; Okano, T.; Sakai, H.; Karikusa, F.; Sawasaki, Y.; Sakurai, Y. Thermo-Responsive Polymeric Surfaces; Control of Attachment and Detachment of Cultured Cells. Die Makromol. Chem. Rapid Commun. 1990, 11, 571–576. [Google Scholar] [CrossRef]
- Yamato, M.; Utsumi, M.; Kushida, A.; Konno, C.; Kikuchi, A.; Okano, T. Thermo-Responsive Culture Dishes Allow the Intact Harvest of Multilayered Keratinocyte Sheets without Dispase by Reducing Temperature. Tissue Eng. 2004, 7, 473–480. [Google Scholar] [CrossRef]
- Takahashi, H.; Matsuzaka, N.; Nakayama, M.; Kikuchi, A.; Yamato, M.; Okano, T. Terminally Functionalized Thermoresponsive Polymer Brushes for Simultaneously Promoting Cell Adhesion and Cell Sheet Harvest. Biomacromolecules 2012, 13, 253–260. [Google Scholar] [CrossRef]
- Lishchynskyi, O.; Stetsyshyn, Y.; Raczkowska, J.; Awsiuk, K.; Orzechowska, B.; Abalymov, A.; Skirtach, A.G.; Bernasik, A.; Nastyshyn, S.; Budkowski, A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines. Materials 2021, 14, 1417. [Google Scholar] [CrossRef]
- Wischerhoff, E.; Badi, N.; Laschewsky, A.; Lutz, J.F. Smart Polymer Surfaces: Concepts and Applications in Biosciences. Adv. Polym. Sci. 2010, 240, 1–33. [Google Scholar]
- Wischerhoff, E.; Uhlig, K.; Lankenau, A.; Börner, H.G.; Laschewsky, A.; Duschl, C.; Lutz, J.-F. Controlled Cell Adhesion on PEG-Based Switchable Surfaces. Angew. Chem. Int. Ed. 2008, 47, 5666–5668. [Google Scholar] [CrossRef]
- Ebara, M.; Yamato, M.; Hirose, M.; Aoyagi, T.; Kikuchi, A.; Sakai, K.; Okano, T. Copolymerization of 2-Carboxyisopropylacrylamide with N-Isopropylacrylamide Accelerates Cell Detachment from Grafted Surfaces by Reducing Temperature. Biomacromolecules 2003, 4, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Nagase, K.; Hatakeyama, Y.; Shimizu, T.; Matsuura, K.; Yamato, M.; Takeda, N.; Okano, T. Thermoresponsive Cationic Copolymer Brushes for Mesenchymal Stem Cell Separation. Biomacromolecules 2015, 16, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Okano, T. Fabrication of a Thermoresponsive Cell Culture Dish: A Key Technology for Cell Sheet Tissue Engineering. Sci. Technol. Adv. Mater. 2010, 11, 014111. [Google Scholar] [CrossRef] [PubMed]
- Rabe, M.; Verdes, D.; Seeger, S. Understanding Protein Adsorption Phenomena at Solid Surfaces. Adv. Colloid Interface Sci. 2011, 162, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Rabe, M.; Verdes, D.; Zimmermann, J.; Seeger, S. Surface Organization and Cooperativity during Nonspecific Protein Adsorption Events. J. Phys. Chem. B 2008, 112, 13971–13980. [Google Scholar] [CrossRef]
- Rabe, M.; Verdes, D.; Seeger, S. Surface-Induced Spreading Phenomenon of Protein Clusters. Soft Matter 2009, 5, 1039–1047. [Google Scholar] [CrossRef]
- Nagase, K.; Ishii, S.; Takeuchi, A.; Kanazawa, H. Temperature-Modulated Antibody Drug Separation Using Thermoresponsive Mixed Polymer Brush-Modified Stationary Phase. Sep. Purif. Technol. 2022, 299, 121750. [Google Scholar] [CrossRef]
- Murad Bhayo, A.; Yang, Y.; He, X. Polymer Brushes: Synthesis, Characterization, Properties and Applications. Prog. Mater. Sci. 2022, 130, 101000. [Google Scholar] [CrossRef]
- Nagase, K.; Inoue, S.; Inoue, M.; Kanazawa, H. Two-Dimensional Temperature-Responsive Chromatography Using a Poly(N-Isopropylacrylamide) Brush-Modified Stationary Phase for Effective Therapeutic Drug Monitoring. Sci. Rep. 2022, 12, 1–13. [Google Scholar] [CrossRef]
- Cross, M.C.; Toomey, R.G.; Gallant, N.D. Protein-Surface Interactions on Stimuli-Responsive Polymeric Biomaterials. Biomed. Mater. 2016, 11, 022002. [Google Scholar] [CrossRef]
- Yuan, L.; Yu, Q.; Li, D.; Chen, H. Surface Modification to Control Protein/Surface Interactions. Macromol. Biosci. 2011, 11, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.A.; Voelcker, N.H.; Thissen, H.; Griesser, H.J. Stimuli-Responsive Interfaces and Systems for the Control of Protein-Surface and Cell-Surface Interactions. Biomaterials 2009, 30, 1827–1850. [Google Scholar] [CrossRef]
- Prawatborisut, M.; Jiang, S.; Oberländer, J.; Mailänder, V.; Crespy, D.; Landfester, K. Modulating Protein Corona and Materials–Cell Interactions with Temperature-Responsive Materials. Adv. Funct. Mater. 2022, 32, 2106353. [Google Scholar] [CrossRef]
- Xue, C.; Yonet-Tanyeri, N.; Brouette, N.; Sferrazza, M.; Braun, P.V.; Leckband, D.E. Protein Adsorption on Poly(N-Isopropylacrylamide) Brushes: Dependence on Grafting Density and Chain Collapse. Langmuir 2011, 27, 8810–8818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, C.; Choi, B.-C.; Choi, S.; Braun, P.V.; Leckband, D.E. Protein Adsorption Modes Determine Reversible Cell Attachment on Poly(N-Isopropyl Acrylamide) Brushes. Adv. Funct. Mater. 2012, 22, 2394–2401. [Google Scholar] [CrossRef]
- Nomura, K.; Makino, H.; Nakaji-Hirabayashi, T.; Kitano, H.; Ohno, K. Temperature-Responsive Copolymer Brush Constructed on a Silica Microparticle by Atom Transfer Radical Polymerization. Colloid. Polym. Sci. 2015, 293, 851–859. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Raczkowska, J.; Lishchynskyi, O.; Bernasik, A.; Kostruba, A.; Harhay, K.; Ohar, H.; Marzec, M.M.; Budkowski, A. Temperature-Controlled Three-Stage Switching of Wetting, Morphology, and Protein Adsorption. ACS Appl. Mater. Interfaces 2017, 9, 12035–12045. [Google Scholar] [CrossRef]
- Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T. Thermally-Modulated on/off-Adsorption Materials for Pharmaceutical Protein Purification. Biomaterials 2011, 32, 619–627. [Google Scholar] [CrossRef]
- Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T. Thermoresponsive Anionic Copolymer Brushes Containing Strong Acid Moieties for Effective Separation of Basic Biomolecules and Proteins. Biomacromolecules 2014, 15, 3846–3858. [Google Scholar] [CrossRef]
- Nagase, K.; Okano, T. Thermoresponsive-Polymer-Based Materials for Temperature-Modulated Bioanalysis and Bioseparations. J. Mater. Chem. B 2016, 4, 6381–6397. [Google Scholar] [CrossRef] [Green Version]
- Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T. Protein Separations via Thermally Responsive Ionic Block Copolymer Brush Layers. RSC Adv. 2016, 6, 26254–26263. [Google Scholar] [CrossRef]
- Burkert, S.; Bittrich, E.; Kuntzsch, M.; Müller, M.; Eichhorn, K.J.; Bellmann, C.; Uhlmann, P.; Stamm, M. Protein Resistance of PNIPAAm Brushes: Application to Switchable Protein Adsorption. Langmuir 2010, 26, 1786–1795. [Google Scholar] [CrossRef] [PubMed]
- Nagase, K.; Kitazawa, S.; Yamada, S.; Akimoto, A.M.; Kanazawa, H. Mixed polymer brush as a functional ligand of silica beads for temperature-modulated hydrophobic and electrostatic interactions. Anal. Chim. Acta 2020, 1095, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gajos, K.; Awsiuk, K.; Budkowski, A. Controlling orientation, conformation, and biorecognition of proteins on silane monolayers, conjugate polymers, and thermo-responsive polymer brushes: Investigations using TOF-SIMS and principal component analysis. Colloid Polym. Sci. 2021, 299, 385–405. [Google Scholar] [CrossRef]
Type of Polymerization Based on the Chemistry of Initiators | Multifunctional Initiators |
---|---|
SI-ATRP | 1-(trichlorosilyl)-2-[m/p-(chloromethyl)phenyl]ethane [75] |
2-(4-chlorosulfonylphenyl)ethylsilane [76] | |
2-bromoisobutyrate residues [77] | |
SI-RAFT | 3-benzylsulfanylthiocarbonyl sulfanylpropanoyl chloride [84] |
SI-PET-RAFT | 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid [86] |
4-cyano-4-(phenylcarbonothioylthio)pentanoic acid [87] | |
2-(n-butyltrithiocarbonate) propionic acid [87] | |
SI-PP | peroxide based on pyromellitic acid chloride and tert-butylhydroperoxide [88] |
cholesterol-based peroxide [89] | |
SI-AP | 2,2-azobis(2-methylpropionamidine) dihydrochloride [90] |
asymmetric azobisisobutyronitrile-based trichlorosilane initiator [91] |
Method | Type of the Surface with TRPBCs | Determination of LCST | Determination of Tg |
---|---|---|---|
Measurement of the wetting contact angles | Flat and Curved | The temperature dependence of water contact angles is similar to that of a sigmoid with the deflection point at LCST [1,47,48,92,93,94,95] | Non-applicable [25,31] |
Ellipsometry | Flat | The swelling ratio of TRPBCs decreases sharply at the LCST [96,97,98] | The thermal expansion curve contains the deflection point at the glass transition temperature [70,71,72] |
Atomic force microscopy (AFM) | Flat | LCST affects surface morphology, but defining LCST is almost impossible [49] | The RMS roughness decreases above the glass transition temperature [25,31] |
Dynamic light scattering (DLS) | Dispersive | The hydrodynamic radius of the nano-object decreases above LCST twice at least [64,99,100,101] | It is difficult to determine the glass transition by measuring the hydrodynamic radius of the particles, but approaches for the detection of the glass transition with DLS are proposed [102,103,104] |
Differential scanning calorimetry (DSC) | Dispersive | The DSC thermogram contains the endothermic peak at the LCST [105] | The DSC heating curve contains the deflection at the glass transition temperature [106,107,108] |
Turbidity measurements | Dispersive and Flat | Above the LCST, the TRPBCs are more turbid than below [109,110] | Non-applicable |
Type of the Polymer Brushes, Polymerization Technique and References | Antibacterial Agents | Comments |
---|---|---|
Without Antibacterial Agents | ||
Homopolymer Grafted Brushes | ||
PNIPAM, SI-AP, argon plasma polymerization [115,116,117,118,119] | None | The adhesion and detachment of bacterial cells depend on the physicochemical properties of bacterial surfaces and TRPBCs. Adhesion of Cobetia marina (Staphylococcus epidermidis) at T > LCST and release (rinsing) at T < LCST. Salmonella typhimurium and Bacillus cereus strong adhesion at T > LCST and weak adhesion at T < LCST |
Copolymer Grafted Brushes | ||
Poly(NIPAM-co-acrylamide) (85 to 15 mol%), SI-AP [119] | None | Salmonella typhimurium and Bacillus cereus almost same adhesion at different T |
poly(NIPAM-co-N-tert-butylacrylamide) (80 to 20 mol%), SI-AP [119] | Salmonella typhimurium and Bacillus cereus very strong adhesion at T > LCST and very weak adhesion at T < LCST | |
With Antibacterial Agents | ||
Homopolymer Grafted Brushes | ||
PDEGMA, SI-ATRP [120] | Levofloxacin | Staphylococcus aureus was tested No traces of bacterial biofilm at T > LCST |
PDEGMA, SI-ATRP [92] | Silver nanoparticles | E. coli and S. aureus were killed at T > LCST |
Poly(4-vinylpyridine), SI-ATRP [92,93] | Silver nanoparticles | E. coli and S. aureus were killed at T > LCST |
Copolymer Grafted Brushes | ||
Poly(NIPAM-co-[2-(methacryloyloxy)-ethyl]trimethylammonium chloride), SI-RAFT, photoinduced polymerization from double bonds [121,122] | [2-(methacryloyloxy)ethyl]trimethylammonium chloride | E. coli and S. aureus were killed at T > LCST |
Detachment of the dead bacteria at T < LCST; no detachment at T > LCST | ||
Poly(NIPAM-co-2-carboxyethyl acrylate) modified by vancomycin moieties, SI-PIMP [124] | Vancomycin | E. coli and S. aureus were killed at T < LCST |
Detachment of the bacteria at T > LCST | ||
Poly(DEGMA-co-hydroxyl-terminated oligo(ethylene glycol) methacrylate-co-2-hydroxyethyl methacrylate), SI-ATRP [125] | Magainin I peptide | L. ivanovii and E. coli were preferably killed at T < LCST |
Detachment of the dead bacteria at T > LCST | ||
Mixed Grafted Brushes | ||
PNIPAM and poly [2-(methacryloyloxy)ethyl]-trimethylammonium chloride, ATRP and then assembled onto surface [123] | Poly [2-(methacryloyloxy) ethyl]trimethylammonium chloride | S. aureus was killed at T > LCST |
Detachment of the dead bacteria at T < LCST |
Type of the Polymer Brushes, Polymerization Technique and References | Application |
---|---|
TRPBCs with LCST | |
Homopolymer Grafted Brushes | |
PNIPAM, electron beam polymerization [131,132,133] | At 37 °C adherent for the different types of cells, once the temperature is decreased, the TRPBCs become antifouling against the cells and the formed cellular sheet releases. |
Poly(N-methacryloyl-l-leucine), SI-PP [54] | The cultivation of embryonic kidney cell (HEK 293) |
Homopolymer Grafted Brushes Functionalized with End Groups | |
PNIPAM brushes with the terminal carboxylic group (functionalized with 3-maleimidopropionic acid), SI-RAFT [134] | High cell adhesion at the temperature above the LCST and rapid cell detachment at the temperature below LCST |
Homopolymer Grafted Brushes with Nanoparticles | |
PDEGMA brushes with embedded inorganic nanoparticles, SI-ATRP [92,135] | Modification of the properties of TRPBCs by inorganic nanoparticles. Keratinocyte HaCaT grows faster on the PDEGMA TRPBCs with silver nanoparticles than on the PDEGMA TRPBCs. Cancerous cells WM35 (melanoma) grow slightly slower on PDEGMA TRPBCs with silver nanoparticles than on PDEGMA TRPBCs. The comparison between the number of cells cultured 24 h on PDEGMA TRPBCs with incorporated calcium carbonate nanoparticles and on “pure” PDEGMA TRPBCs shows an essential and slight reduction in adhesion for the WM35 and HaCaT cell lines, respectively. The completely anti-adhesive effect described for the osteoblastic cell line MC3T3-el on PDEGMA TRPBCs was absent and has been surpassed by the incorporation of nanoparticles. For longer culture times, the number of cells for both PDEGMA TRPBCs (i.e., “pure” and with embedded nanoparticles) was reduced by almost five times |
Copolymer Grafted Brushes | |
Random | |
Poly(DEGMA-co-oligo(ethylene glycol) methacrylate), SI-ATRP [136,137] | L929 mouse fibroblasts at T = 37 °C adhered efficiently and spread well. At T < LCST a rapid cell rounding was observed allowing cells to detach |
Poly(NIPAM-co-2-lactobionamidoethyl methacrylate), SI-ATRP [27] | Selective adhesion of HepG2 cells at T = 37 °C and antifouling properties against NIH-3T3 fibroblasts. HepG2 cells detached at 25 °C |
Poly(NIPAM-co-2-carboxyisopropylacrylamide), electron beam polymerization [138] | Cell adhesion was higher on the surface of copolymer brushes at T < LCST |
PDEGMA with RGD peptide, SI-ATRP [29] | Incorporation of RGD increased adhesion of 3T3 fibroblasts at T = 37 °C; the cells released at T < LCST |
Poly(NIPAM-co-N,N-dimethylaminopropylacrylamide-co-N-tert-butylacrylamide), SI-ATRP [139] | Human bone marrow mesenchymal stem cells (hbmMSC) adhered to the brushes at 37 °C and were detached below LCST at 20 °C. Other bone marrow-derived cells (hbmMSC) did not adhere to the brushes. Hence, the brushes can be used to purify hbmMSC cells from the hbm-derived cells |
Block Copolymers | |
Poly(NIPAM)-block-poly(acrylic acid) with RGD peptide, SI-ATRP [28] | The RGD increased the adhesion of the cells at 37 °C and did not decrease the ability to detach the adhered cells by lowering the temperature below LCST |
TRPBCs with UCST | |
Poly(N-acryloyl glycinamide-co-N-phenylacrylamide), SI-ATRP [38] | NIH-3T3 cells adhered at 30 °C, which is below the UCST transition, and were released at 37 °C |
TRPBCs with Tg | |
Poly(cholesteryl methacylate), SI-PP [67] | Culture of non-malignant bladder cancer cells (HCV29 line) and granulosa cells |
Type of the Polymer Brushes, Polymerization Technique and References | Application |
---|---|
TRPBCs with LCST | |
Homopolymer Grafted Brushes | |
PNIPAM, SI-ATRP [151,152] | Strong BSA adsorption at T > LCST. Low BSA adsorption at T < LCST |
PNIPAM with carboxylic groups from multifunctional initiator, SI-PP [47] | Strong adsorption of lentil lectin at T > LCST. Low lentil lectin adsorption at T < LCST. Strong protein adsorption for all T at acid pH |
PDEGMA, SI-ATRP [153] | Non-fouling properties observed for BSA |
POEGMA246 with carboxylic groups from multifunctional initiator, SI-PP [48] | Non-fouling properties (for lentin lectin) for all T at neutral and base pH. Strong lentin lectin adsorption for all T at acid pH |
Poly(4-vinylpyridine), SI-PP [53] | More efficient BSA and human fibrinogen adsorption at T > LCST than at T < LCST |
Copolymer Grafted Brushes | |
Poly(4-vinylpyridine-co-OEGMA246), SI-PP [154] Poly(4-vinylpyridine-co-DEGMA), SI-ATRP [104] | Three-stage switching in BSA adsorption Switchable high/low fouling properties for human serum albumin, immunoglobulin G and fibrinogen |
Poly(NIPAM-co-N,N-dimethylaminopropylacrylamide-co-N-tert-butylacrylamide), SI-ATRP [155] | For separation of human serum albumin and γ-globulin Human serum albumin adsorbed at T > LCST |
Poly(NIPAM-co-2-acrylamido-2-methylpropanesulfonic acid-co-tert-butylacrylamide, SI-ATRP [156] | The adsorption of basic proteins is promoted by elevating the temperature. Adsorbed proteins released by reducing the temperature |
Block Copolymers | |
Poly(3-acrylamidopropyl trimethylammonium chloride)-block-PNIPAM, SI-ATRP [158] | α-lactalbumin and β-lactoglobulin from milk adsorbed at T > LCST and desorbed at T < LCST |
Mixed Grafted Brushes | |
Poly(2-vinylpyridine) and PNIPAM, grafted using monocarboxy-terminated polymers [159] | The amount of protein adsorbed could be controlled, depending on composition and the temperature |
Poly(N,N-dimethylaminopropyl acrylamide) and PNIPAM, SI-RAFT [160] | Protein mixtures, albumin, conalbumin, fibrinogen, and γ-globulin, can be separated simply by changing the temperature after adsorption on the mixed brush |
TRPBCs with Tg | |
PBMA, SI-ATRP [25] | Almost twice the increase in BSA adsorption for the temperature elevated from 10 °C to 35 °C. Temperature-dependent BSA orientation, with Albumin 1 and 2 (Albumin 3) exposed for the protein adsorbed at temperature below (above) Tg. The adsorption of IgG increased with temperature. Temperature-dependent IgG orientation, with end-on (head-on) alignment for the protein adsorbed at temperature below (above) Tg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nastyshyn, S.; Stetsyshyn, Y.; Raczkowska, J.; Nastishin, Y.; Melnyk, Y.; Panchenko, Y.; Budkowski, A. Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers 2022, 14, 4245. https://doi.org/10.3390/polym14194245
Nastyshyn S, Stetsyshyn Y, Raczkowska J, Nastishin Y, Melnyk Y, Panchenko Y, Budkowski A. Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers. 2022; 14(19):4245. https://doi.org/10.3390/polym14194245
Chicago/Turabian StyleNastyshyn, Svyatoslav, Yuriy Stetsyshyn, Joanna Raczkowska, Yuriy Nastishin, Yuriy Melnyk, Yuriy Panchenko, and Andrzej Budkowski. 2022. "Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications" Polymers 14, no. 19: 4245. https://doi.org/10.3390/polym14194245
APA StyleNastyshyn, S., Stetsyshyn, Y., Raczkowska, J., Nastishin, Y., Melnyk, Y., Panchenko, Y., & Budkowski, A. (2022). Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers, 14(19), 4245. https://doi.org/10.3390/polym14194245