Graphene-Based Membranes for Water Desalination: A Literature Review and Content Analysis
(This article belongs to the Section Polymer Applications)
Abstract
:1. Introduction
2. Bibliometric Analysis Methodology
2.1. Data Source and Search Criteria
2.2. Analysis Method
3. Bibliographic Analysis Results
3.1. Current Scenarios Regarding Publishing
3.2. Analysis of Leading Countries, Top Institutions and Funding Sponsors
3.3. Publication Distribution by Journals and Subject Category
3.4. Analysis and Network of Author Keywords
3.5. Burst Keywords Analysis
4. Synthesis of Graphene-Based Membrane
4.1. Synthesis of Graphene Membrane
4.2. Synthesis of Graphene Oxide Membrane
4.3. Synthesis of Reduced Graphene Oxide
5. Applications of Graphene-Based Membranes
5.1. Reverse Osmosis (RO)
5.2. Forward Osmosis (FO)
5.3. Solar Desalination
6. Conclusions and Perspectives
- (1)
- The design of novel multifunctional nanocomposite membranes is always a focus. For example, the membranes with long-term stability are worthy of further investigation. The antifouling (organic, inorganic, and biological fouling) performance of the membrane is related to the hydrophilicity, roughness, charge density, and functional groups of the membrane. Therefore, graphene-based membranes should integrate antibacterial nanomaterials and the membrane surface should be functionalized. In addition, there are many different components of sea water. The molecular size, physical, and chemical properties of these components are different. These complex environmental applications present different challenges to the membranes used.
- (2)
- The application of graphene-based membranes has been limited to the laboratory scale, and the successful commercialization of large-scale industrial applications is still rare. Several criteria must be considered to bring membrane desalination into practical applications. Firstly, a low-cost method is needed to develop high-efficiency graphene-based membranes with excellent performance. Secondly, techno-economic analysis should be conducted to calculate the total cost of the desalination industry. Thirdly, the design and manufacturing process needs to be improved for the large-scale production of graphene-based desalination devices with high performance but low-cost. The above three points ensure its implementation in large-scale, practical, and practical field applications.
- (3)
- Seawater desalination is an energy-intensive process, and utilizing a hybrid system of renewable energy sources is proposed as a promising solution. Heat-driven/solar-driven desalination is regarded as a good strategy for a desalination system. Solar energy is a renewable and clean energy source and is considered a promising technology to provide a sustainable energy supply for desalination. In particular, graphene, as light absorption, and a light-to-heat conversion material, is an ideal candidate for solar-driven seawater desalination. Future studies should focus on how to further increase the evaporation rate. Firstly, innovative photothermal materials should to be designed and the structural design should be optimized, because the transport of water is closely related to the pore structure and surface properties. Secondly, the mechanisms of mass transfer, convection, and radiation, in membrane desalination processes need to be further unveiled. Simulation models are powerful tools for gaining insight into the fundamental behavior and dynamics of processes related to light, water, steam, and heat. Thirdly, an exploration of all-weather desalination should be conducted. Nearly all efforts with the current system are focused on laboratory testing, but light intensity varies with environmental conditions, such as air humidity, and rainy weather, etc. Possibly steam generation will be reduced to zero in dark conditions. Through long-term outdoor testing, researchers can better understand the gap between current systems and real-world applications. These future efforts will make graphene-based membranes a potential solution to water scarcity.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.N.; Goh, K.L.; Li, X.S.; Setiawan, L.; Wang, R. Membranes and processes for forward osmosis-based desalination: Recent advances and future prospects. Desalination 2018, 434, 81–99. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F. A review on inorganic membranes for desalination and wastewater treatment. Desalination 2018, 434, 60–80. [Google Scholar] [CrossRef]
- Li, C.N.; Goswami, Y.; Stefanakos, E. Solar assisted sea water desalination: A review. Renew. Sustain. Energy Rev. 2013, 19, 136–163. [Google Scholar] [CrossRef]
- Sharon, H.; Reddy, K.S. A review of solar energy driven desalination technologies. Renew. Sustain. Energy Rev. 2015, 41, 1080–1118. [Google Scholar] [CrossRef]
- Gude, V.G. Desalination and sustainability—An appraisal and current perspective. Water Res. 2016, 89, 87–106. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Li, X.Q.; Xu, W.C.; Tang, M.Y.; Zhou, L.; Zhu, B.; Zhu, S.N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958. [Google Scholar] [CrossRef] [Green Version]
- Camacho, L.M.; Dumee, L.; Zhang, J.H.; Li, J.D.; Duke, M.; Gomez, J.; Gray, S. Advances in membrane distillation for water desalination and purification applications. Water 2013, 5, 94–196. [Google Scholar] [CrossRef] [Green Version]
- Politano, A.; Argurio, P.; Profio, G.D.; Sanna, V.; Cupolillo, A.; Chakraborty, S.; Arafat, H.A.; Curcio, E. Photothermal membrane distillation for seawater desalination. Adv. Mater. 2017, 29, 1603504. [Google Scholar] [CrossRef]
- Drioli, E.; Ali, A.; Macedonio, F. Membrane distillation: Recent developments and perspectives. Desalination 2015, 356, 56–84. [Google Scholar] [CrossRef]
- Rezaei, M.; Warsinger, D.M.; Lienhard, J.H.; Duke, M.C.; Matsuura, T.; Samhaber, W.M. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. Water Res. 2018, 139, 329–352. [Google Scholar] [CrossRef]
- Elimelech, M. Materials for next generation desalination and water purification membranes. In Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, USA, 2018; Volume 255. [Google Scholar]
- Li, D.; Yan, Y.S.; Wang, H.T. Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog. Polym. Sci. 2016, 61, 104–155. [Google Scholar] [CrossRef] [Green Version]
- Penate, B.; Garcia-Rodriguez, L. Current trends and future prospects in the design of seawater reverse osmosis desalination technology. Desalination 2012, 284, 1–8. [Google Scholar] [CrossRef]
- Kang, G.D.; Cao, Y.M. Development of antifouling reverse osmosis membranes for water treatment: A review. Water Res. 2012, 46, 584–600. [Google Scholar] [CrossRef]
- Duan, J.T.; Pan, Y.C.; Pacheco, F.; Litwiller, E.; Lai, Z.P.; Pinnau, I. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J. Membr. Sci. 2015, 476, 303–310. [Google Scholar] [CrossRef]
- Shao, C.X.; Zhao, Y.; Qu, L.T. Tunable graphene systems for water desalination. ChemNanoMat 2020, 6, 1028–1048. [Google Scholar] [CrossRef] [Green Version]
- Al-Amshawee, S.; Yunus, M.Y.B.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Abu Hasan, H. Electrodialysis desalination for water and wastewater: A review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar] [CrossRef]
- Strathmann, H. Electrodialysis, a mature technology with a multitude of new applications. Desalination 2010, 264, 268–288. [Google Scholar] [CrossRef]
- Chen, X.Y.; Feng, Z.H.; Gohil, J.; Stafford, C.M.; Dai, N.; Huang, L.; Lin, H.Q. Reduced holey graphene oxide membranes for desalination with improved water permeance. ACS Appl. Mater. Interfaces 2020, 12, 1387–1394. [Google Scholar] [CrossRef]
- Chung, Y.T.; Mahmoudi, E.; Mohammad, A.W.; Benamor, A.; Johnson, D.; Hilal, N. Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control. Desalination 2017, 402, 123–132. [Google Scholar] [CrossRef]
- Manawi, Y.; Kochkodan, V.; Hussein, M.A.; Khaleel, M.A.; Khraisheh, M.; Hilal, N. Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination 2016, 391, 69–88. [Google Scholar] [CrossRef]
- Heiranian, M.; Farimani, A.B.; Aluru, N.R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 2015, 6, 8616. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.P.; Gu, Q.F.; Wang, C.; Gao, Q.L.; Guo, J.X.; Wong, P.W.; Liu, C.T.; An, A.K. Self-assembled hydrophobic/hydrophilic porphyrin-Ti3C2Tx MXene janus membrane for dual-functional enabled photothermal desalination. ACS Appl. Mater. Interfaces 2021, 13, 3762–3770. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Cohen-Tanugi, D.; Grossman, J.C. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. J. Chem. Phys. 2014, 141, 074704. [Google Scholar] [CrossRef]
- Matshetshe, K.; Sikhwivhilu, K.; Ndlovu, G.; Tetyana, P.; Moloto, N.; Tetana, Z. Antifouling and antibacterial beta-cyclodextrin decorated graphene oxide/polyamide thin-film nanocomposite reverse osmosis membranes for desalination applications. Sep. Purif. Technol. 2022, 278, 119594. [Google Scholar] [CrossRef]
- Mahmoud, K.A.; Mansoor, B.; Mansour, A.; Khraisheh, M. Functional graphene nanosheets: The next generation membranes for water desalination. Desalination 2015, 356, 208–225. [Google Scholar] [CrossRef]
- Leong, Z.Y.; Lu, G.; Yang, H.Y. Three-dimensional graphene oxide and polyvinyl alcohol composites as structured activated carbons for capacitive desalination. Desalination 2019, 451, 172–181. [Google Scholar] [CrossRef]
- Teow, Y.H.; Mohammad, A.W. New generation nanomaterials for water desalination: A review. Desalination 2019, 451, 2–17. [Google Scholar] [CrossRef]
- Sun, P.Z.; Wang, K.L.; Zhu, H.W. Recent Developments in graphene-based membranes: Structure, mass-transport mechanism and potential applications. Adv. Mater. 2016, 28, 2287–2310. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zupic, I.; Cater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Moral-Munoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29. [Google Scholar] [CrossRef] [Green Version]
- Merigo, J.M.; Pedrycz, W.; Weber, R.; de la Sotta, C. Fifty years of information sciences: A bibliometric overview. Inf. Sci. 2018, 432, 245–268. [Google Scholar] [CrossRef]
- Gaviria-Marin, M.; Merigo, J.M.; Baier-Fuentes, H. Knowledge management: A global examination based on bibliometric analysis. Technol. Forecast. Soc. 2019, 140, 194–220. [Google Scholar] [CrossRef]
- Tanaka, H.; Ho, Y.S. Global trends and performances of desalination research. Desalination Water Treat. 2011, 25, 1–12. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W.; Johnson, D.; Hilal, N. Forward osmosis research trends in desalination and wastewater treatment: A review of research trends over the past decade. J. Water Process Eng. 2019, 31, 100886. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Citation-based clustering of publications using citnet explorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, X.; Yue, W.L.; Vu, H.L. Visualization and analysis of mapping knowledge domain of road safety studies. Accid. Anal. Prev. 2018, 118, 131–145. [Google Scholar] [CrossRef]
- Chen, C.M. Citespace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.M.; Hu, Z.G.; Liu, S.B.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in citespace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Ma, E.; Qu, H.L. Knowledge mapping of hospitality research—A visual analysis using citespace. Int. J. Hosp. Manag. 2017, 60, 77–93. [Google Scholar] [CrossRef]
- Fang, Y.; Yin, J.; Wu, B.H. Climate change and tourism: A scientometric analysis using citespace. J. Sustain. Tour. 2018, 26, 108–126. [Google Scholar] [CrossRef]
- Chen, C.M. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, T.D.; Camparotto, N.G.; Rodrigues, E.A.; Mastelaro, V.R.; Dantas, R.F.; Prediger, P. New graphene oxide-safranin modified@polyacrylonitrile membranes for removal of emerging contaminants: The role of chemical and morphological features. Chem. Eng. J. 2022, 446, 137176. [Google Scholar] [CrossRef]
- Wei, Y.B.; Zhu, Y.X.; Jiang, Y.J. Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification. Chem. Eng. J. 2019, 356, 915–925. [Google Scholar] [CrossRef]
- Zhang, P.; Gong, J.L.; Zeng, G.M.; Deng, C.H.; Yang, H.C.; Liu, H.Y.; Huan, S.Y. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem. Eng. J. 2017, 322, 657–666. [Google Scholar] [CrossRef]
- Chen, X.F.; Qiu, M.H.; Ding, H.; Fu, K.Y.; Fan, Y.Q. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale 2016, 8, 5696–5705. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Chen, J.Y.; Liu, M.Y.; Huang, H.Y.; Zhang, X.Y.; Wei, Y. Polydopamine-based functional materials and their applications in energy, environmental, and catalytic fields: State-of-the-art review. Chem. Eng. J. 2020, 387, 124019. [Google Scholar] [CrossRef]
- Liu, G.P.; Jin, W.Q.; Xu, N.P. Graphene-based membranes. Chem. Soc. Rev. 2015, 44, 5016–5030. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Mi, B.X. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47, 3715–3723. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.F.; Xu, C.W.; Ji, W.B.; Dong, H.Z.; Sun, Q.; Yu, L.Y.; Dong, L.F. Layer-by-layer self-assembly TiO2 and graphene oxide on polyamide reverse osmosis membranes with improved membrane durability. Desalination 2017, 423, 21–29. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z.G. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Ullah, S.; Liu, Y.; Hasan, M.; Zeng, W.W.; Shi, Q.T.; Yang, X.Q.; Fu, L.; Ta, H.Q.; Lian, X.Y.; Sun, J.Y.; et al. Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family. Nano Res. 2022, 15, 1310–1318. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.F.; Park, J.S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kafiah, F.M.; Khan, Z.; Ibrahim, A.; Karnik, R.; Atieh, M.; Laoui, T. Monolayer graphene transfer onto polypropylene and polyvinylidenedifluoride microfiltration membranes for water desalination. Desalination 2016, 388, 29–37. [Google Scholar] [CrossRef]
- Koenig, S.P.; Wang, L.D.; Pellegrino, J.; Bunch, J.S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 2012, 7, 728–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Tanugi, D.; McGovern, R.K.; Dave, S.H.; Lienhard, J.H.; Grossman, J.C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 2014, 7, 1134–1141. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, D.S.; Yan, T.T.; Wen, X.R.; Shi, L.Y.; Zhang, J.P. Graphene prepared via a novel pyridine-thermal strategy for capacitive deionization. J. Mater. Chem. 2012, 22, 23745–23748. [Google Scholar] [CrossRef]
- Surwade, S.P.; Smirnov, S.N.; Vlassiouk, I.V.; Unocic, R.R.; Veith, G.M.; Dai, S.; Mahurin, S.M. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459–464. [Google Scholar] [CrossRef] [PubMed]
- O’Hern, S.C.; Boutilier, M.S.H.; Idrobo, J.C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 2014, 14, 1234–1241. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Tanugi, D.; Grossman, J.C. Water desalination across nanoporous graphene. Nano Lett. 2012, 12, 3602–3608. [Google Scholar] [CrossRef]
- Yang, Y.B.; Yang, X.D.; Liang, L.; Gao, Y.Y.; Cheng, H.Y.; Li, X.M.; Zou, M.C.; Cao, A.Y.; Ma, R.Z.; Yuan, Q.; et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 2019, 364, 1057. [Google Scholar] [CrossRef]
- Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335, 442–444. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.Z.; Zhu, M.; Wang, K.L.; Zhong, M.L.; Wei, J.Q.; Wu, D.H.; Xu, Z.P.; Zhu, H.W. Selective ion penetration of graphene oxide membranes. ACS Nano 2013, 7, 428–437. [Google Scholar] [CrossRef]
- Wu, Z.S.; Ren, W.C.; Gao, L.B.; Liu, B.L.; Jiang, C.B.; Cheng, H.M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 2009, 47, 493–499. [Google Scholar] [CrossRef]
- Pei, J.X.; Zhang, X.T.; Huang, L.; Jiang, H.F.; Hu, X.J. Fabrication of reduced graphene oxide membranes for highly efficient water desalination. RSC Adv. 2016, 6, 101948–101952. [Google Scholar] [CrossRef]
- Cao, B.; Ansari, A.; Yi, X.Y.; Rodrigues, D.F.; Hu, Y.D. Gypsum scale formation on graphene oxide modified reverse osmosis membrane. J. Membr. Sci. 2018, 552, 132–143. [Google Scholar] [CrossRef]
- Choi, W.; Choi, J.; Bang, J.; Lee, J.H. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl. Mater. Interfaces 2013, 5, 12510–12519. [Google Scholar] [CrossRef]
- Kim, H.J.; Choi, Y.S.; Lim, M.Y.; Jung, K.H.; Kim, D.G.; Kim, J.J.; Kang, H.; Lee, J.C. Reverse osmosis nanocomposite membranes containing graphene oxides coated by tannic acid with chlorine-tolerant and antimicrobial properties. J. Membr. Sci. 2016, 514, 25–34. [Google Scholar] [CrossRef]
- Qiu, R.S.; Xiao, J.; Chen, X.D.; Selomulya, C.; Zhang, X.W.; Woo, M.W. Relationship between desalination performance of graphene oxide membranes and edge functional groups. ACS Appl. Mater. Interfaces 2020, 12, 4769–4776. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, X.N. Pyridinic nitrogen doped nanoporous graphene as desalination membrane: Molecular simulation study. J. Membr. Sci. 2015, 496, 108–117. [Google Scholar] [CrossRef]
- Cheng, P.F.; Kelly, M.M.; Moehring, N.K.; Ko, W.; Li, A.P.; Idrobo, J.C.; Boutilier, M.S.H.; Kidambi, P.R. Facile size-selective defect Sealing in large-area atomically thin graphene membranes for sub-nanometer scale separations. Nano Lett. 2020, 20, 5951–5959. [Google Scholar] [CrossRef]
- Sun, P.Z.; Chen, Q.; Li, X.D.; Liu, H.; Wang, K.L.; Zhong, M.L.; Wei, J.Q.; Wu, D.H.; Ma, R.Z.; Sasaki, T.; et al. Highly efficient quasi-static water desalination using monolayer graphene oxide/titania hybrid laminates. NPG Asia Mater. 2015, 7, e162. [Google Scholar] [CrossRef] [Green Version]
- Perreault, F.; Tousley, M.E.; Elimelech, M. Thin-Film Composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett. 2014, 1, 71–76. [Google Scholar] [CrossRef]
- Hegab, H.M.; ElMekawy, A.; Barclay, T.G.; Michelmore, A.; Zou, L.D.; Saint, C.P.; Ginic-Markovic, M. Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: Performance patterns and biofouling propensity. ACS Appl. Mater. Interfaces 2015, 7, 18004–18016. [Google Scholar] [CrossRef]
- Wu, S.H.; Xiong, G.P.; Yang, H.C.; Tian, Y.K.; Gong, B.Y.; Wan, H.W.; Wang, Y.; Fisher, T.S.; Yan, J.H.; Cen, K.F.; et al. Scalable production of integrated graphene nanoarchitectures for ultrafast solar-thermal conversion and vapor generation. Matter 2019, 1, 1017–1032. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.P.; Li, J.; Lv, L.X.; Zhao, Y.; Qu, L.T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087–5093. [Google Scholar] [CrossRef]
- Tian, Y.K.; Yang, H.C.; Wu, S.H.; Yan, J.H.; Cen, K.F.; Luo, T.F.; Xiong, G.P.; Hou, Y.; Bo, Z.; Ostrikov, K. Beyond lotus: Plasma nanostructuring enables efficient energy and water conversion and use. Nano Energy 2019, 66, 104125. [Google Scholar] [CrossRef]
- Xia, Y.; Hou, Q.F.; Jubaer, H.; Li, Y.; Kang, Y.; Yuan, S.; Liu, H.Y.; Woo, M.W.; Zhang, L.; Gao, L.; et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 2019, 12, 1840–1847. [Google Scholar] [CrossRef]
- Huang, Q.C.; Liang, X.C.; Zhang, X.J.; Yan, C.Y.; Liang, J.; Tang, H.; Liu, Y.Z. Efficient-heat-utilization 3D T-shaped porous sponge assists 2D photothermal films to achieve self-acting salt rejection and extra evaporation under high-concentration brine. Desalination 2021, 499, 114806. [Google Scholar] [CrossRef]
- Zhang, P.P.; Liao, Q.H.; Yao, H.Z.; Cheng, H.H.; Huang, Y.X.; Yang, C.; Jiang, L.; Qu, L.T. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 2018, 6, 15303–15309. [Google Scholar] [CrossRef]
- Storer, D.P.; Phelps, J.L.; Wu, X.; Owens, G.; Khan, N.I.; Xu, H.L. Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation. ACS Appl. Mater. Interfaces 2020, 12, 15279–15287. [Google Scholar] [CrossRef]
- Xu, J.J.; Xu, F.; Qian, M.; Li, Z.; Sun, P.; Hong, Z.L.; Huang, F.Q. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. Nano Energy 2018, 53, 425–431. [Google Scholar] [CrossRef]
- Kim, K.; Yu, S.; An, C.; Kim, S.W.; Jang, J.H. Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun Illumination. ACS Appl. Mater. Interfaces 2018, 10, 15602–15608. [Google Scholar] [CrossRef] [PubMed]
- Awad, F.S.; Kiriarachchi, H.D.; AbouZeid, K.M.; Ozgur, U.; El Shall, M.S. Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination. ACS Appl. Energy Mater. 2018, 1, 976–985. [Google Scholar] [CrossRef]
- Kospa, D.A.; Ahmed, A.I.; Samra, S.E.; Ibrahim, A.A. High efficiency solar desalination and dye retention of plasmonic/reduced graphene oxide based copper oxide nanocomposites. RSC Adv. 2021, 11, 15184–15194. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Liu, M.; Li, J.; Kang, N.; Ahmed, A.; Zong, Y.; Tu, J.; Chen, Y.; Zhang, P.; Liu, X. Graphene-Based Membranes for Water Desalination: A Literature Review and Content Analysis. Polymers 2022, 14, 4246. https://doi.org/10.3390/polym14194246
Dai Y, Liu M, Li J, Kang N, Ahmed A, Zong Y, Tu J, Chen Y, Zhang P, Liu X. Graphene-Based Membranes for Water Desalination: A Literature Review and Content Analysis. Polymers. 2022; 14(19):4246. https://doi.org/10.3390/polym14194246
Chicago/Turabian StyleDai, Yexin, Miao Liu, Jingyu Li, Ning Kang, Afaque Ahmed, Yanping Zong, Jianbo Tu, Yanzhen Chen, Pingping Zhang, and Xianhua Liu. 2022. "Graphene-Based Membranes for Water Desalination: A Literature Review and Content Analysis" Polymers 14, no. 19: 4246. https://doi.org/10.3390/polym14194246
APA StyleDai, Y., Liu, M., Li, J., Kang, N., Ahmed, A., Zong, Y., Tu, J., Chen, Y., Zhang, P., & Liu, X. (2022). Graphene-Based Membranes for Water Desalination: A Literature Review and Content Analysis. Polymers, 14(19), 4246. https://doi.org/10.3390/polym14194246