Improving the Mould and Blue-Stain-Resistance of Bamboo through Acidic Hydrolysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Acidic Treatment
2.3. Mould Resistance Tests
2.4. Soluble Sugar Content in the Hydrolysates
2.5. Soluble Sugars and Starch Content Remained in Bamboo
2.6. Color Change
2.7. Weight Loss Ratio
2.8. SEM Bbservation
3. Results and Discussion
3.1. Treatments with Acids Concentration below 2%
3.1.1. Mould-Resistance Test
3.1.2. Glucose Yields in Different Hydrolysates
3.1.3. Color Changes Due to the Treatments
3.2. Citric Acid Treatments with Different Concentration
3.2.1. Mould Resistance Test
3.2.2. Glucose Yields and Starch Remained
3.2.3. Color Changes Due to the Treatments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okahisa, Y.; Yoshimura, T.; Imamura, Y. Imamura, An application of the alkaline extraction-glucoamylase hydrolysis method to analyze starch and sugar contents of bamboo. J. Wood Sci. 2005, 51, 542–545. [Google Scholar] [CrossRef]
- Magel, E.; Kruse, S.; Lütje, G.; Liese, W. Soluble carbohydrates and acid invertases involved in the rapid growth of developing culms in Sasa palmata (Bean) Camus. Bamboo Sci. Cult. 2006, 19, 23–29. [Google Scholar]
- Sun, F.; Bao, B.; Ma, L.; Chen, A.; Duan, X. Mould-resistance of bamboo treated with the compound of chitosan-copper complex and organic fungicides. J. Wood Sci. 2012, 58, 51–56. [Google Scholar] [CrossRef]
- Fengel, D.; Shao, X. A chemical and ultrastructural study of the Bamboo species Phyllostachys makinoi Hay. Wood Sci. Technol. 1984, 18, 103–112. [Google Scholar]
- Townsend, T.; Dubey, B.; Tolaymat, T.; Solo-Gabriele, H. Preservative leaching from weathered CCA-treated wood. J. Environ. Manag. 2005, 75, 105–113. [Google Scholar] [CrossRef]
- Dubey, B.; Townsend, T.; Solo-Gabriele, H.; Bitton, G. Impact of surface water conditions on preservative leaching and aquatic toxicity from treated wood products. Environ. Sci. Technol. 2007, 41, 3781–3786. [Google Scholar] [CrossRef]
- Nayebare, K.P.; Zhang, S.Y.; Wu, H.; Yang, S.; Li, S.; Sun, F.; Goodell, B. Enzymatic biocatalysis of bamboo chemical constituents to impart anyimold properties. Wood Sci. Technol. 2018, 52, 619–635. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, H.; Ren, D.; Yu, Y.; Yu, Y. Wood modification with furfuryl alcohol catalysed by a new composite acidic catalyst. Wood Sci. Technol. 2015, 49, 845–856. [Google Scholar] [CrossRef]
- Kaper, T.; Van Der Maarel, M.; Euverink, G.; Dijkhuizen, L. Exploring and exploiting starch-modifying amylomaltases from thermophiles. Biochem. Soc. Trans. 2004, 32, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Tester, R.F.; Debon, S.J. Annealing of starch—A review. Int. J. Biol. Macromol. 2000, 27, 1–12. [Google Scholar] [CrossRef]
- Clausen, C.A.; Coleman, R.D.; Yang, V.W. Fatty acid-based formulations for wood protection against mold and sapstain. For. Prod. J. 2010, 60, 301–304. [Google Scholar] [CrossRef]
- Barbosa-Canovas, G.; Pothakamury, U.R.; Palou, E.; Swanson, B.G. Chemicals and Biochemicals Used in Food Preservation, Nonthermal Preservation of Foods; Marcel Dekker, Inc.: New York, NY, USA, 1998; Chapter 8; pp. 215–233. [Google Scholar]
- Doores, S. Organic Acids. Antimicrobials in Foods; Davidson, P., Branen, A., Eds.; Marcel Dekker: New York, NY, USA, 1993; p. 95. [Google Scholar]
- Tang, T.K.H.; Schmidt, O.; Liese, W. Environment-friendly short-term protection of bamboo against moulding. J. Timber Deve. Assoc. India 2009, 55, 8–17. [Google Scholar]
- Tang, T.K.H.; Schmidt, O.; Liese, W. Protection of bamboo against mould using environment-friendly chemicals. J. Trop. For. Sci. 2012, 24, 285–290. [Google Scholar]
- Schmidt, O.; Magel, E.; Frühwald, A.; Glukhykh, L.; Erdt, K.; Kaschuro, S. Influence of sugar and starch content of palm wood on fungal development and prevention of fungal colonization by acid treatment. Holzforschung 2016, 70, 783–791. [Google Scholar] [CrossRef]
- Sun, F.; Zhou, Y.; Bao, B.; Chen, A.; Du, C. Influence of solvent treatment on mould resistance of bamboo. Bioresources 2011, 6, 2091–2100. [Google Scholar]
- Liese, W. Protection of bamboo in service. World Bamboo Ratt. 2003, 1, 29–33. (In Chinese) [Google Scholar]
- Kumar, S.; Shukla, K.S.; Dev, I.; Dobriyal, P.B. Bamboo Preservation Techniques: A Review; International Bamboo and Rattan and Indian Council of Forestry Research Educaton: Dehra Dun, India, 1994. [Google Scholar]
- Wingfield, M.J.; Seifert, K.A.; Webber, J.F. Webber, Ceratocystis and Ophiostoma: Taxonomy, Ecology and Pathogenicity; APS Press: St. Paul, MN, USA, 1993; pp. 141–151, 269–287. [Google Scholar]
- Schmidt, O. Wood and Tree Fungi. Biology, Damage, Protect, and Use; Springer: Berlin, Germany, 2006. [Google Scholar]
- Huang, X.D.; Hse, C.Y.; Shupe, T.F. Study on the mould resistant properties of moso bamboo treated with high pressure and amylase. Bioresources 2014, 9, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, O.; Wei, D.S.; Tang, T.K.H.; Liese, W. Bamboo and fungi. J. Bamboo Ratt. 2013, 12, 1–14. [Google Scholar]
- Wei, D.S. Bamboo Inhabiting Fungi and Their Damage to the Substrate. Master’s Dissertation, University of Hamburg, Hamburg, Germany, 2014. [Google Scholar]
- Yusoff, R.B.; Takagi, H.; Nakagaito, A.N. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind. Crops Prod. 2016, 94, 562–573. [Google Scholar] [CrossRef]
- Jiang, Z.H. Bamboo and Rattan in the World; China Forestry Publishing House: Beijing, China, 2008. [Google Scholar]
- Li, Z.; Jiang, Z.; Fei, B.; Cai, Z.; Pan, X. Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Bioresour. Technol. 2014, 151, 91–99. [Google Scholar] [CrossRef]
- Pirt, S.J.; Whelan, W.J. The determination of starch by acid hydrolysis. J. Sci. Food Agric. 1951, 2, 224–228. [Google Scholar] [CrossRef]
- Jacobs, H.; Eerlingen, R.C.; Rouseu, N.; Colonna, P.; Delcour, J.A. Acid hydrolysis of native and annealed wheat, potato and pea starches-DSC melting features and chain length distributions of lintnerised starches. Carbohydr. Res. 1998, 308, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Q.; Ren, H.Q. Comparative study of the photo-discoloration of moso bamboo (Phyllostachys pubescens Mazel) and two wood species. Appl. Surf. Sci. 2008, 254, 7029–7034. [Google Scholar] [CrossRef]
- Pastore, T.C.M.; Santos, K.O.; Rubim, J.C. Aspectrocolorimetric study on the effect of ultraviolet irradiation of four tropical hardwoods. Bioresour. Technol. 2004, 93, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Jamalirad, L.; Doosthoseini, K.; Koch, G.; Mirshokraie, S.A.; Welling, J. Investigation on bonding quality of beech wood (Fagus orientalis L.) veneer during high temperature drying and aging. Eur. J. Wood Prod. 2012, 70, 497–506. [Google Scholar] [CrossRef]
- Feng, X.; Xiao, Z.; Sui, S.; Wang, Q.; Xie, Y. Esterification of wood with citric acid: The catalytic effects of sodium hypophosphite (SHP). Holzforschung 2014, 68, 427–433. [Google Scholar] [CrossRef]
Varieties of Treatment | A. niger | Penicillium citrinum | Trichoderma viride | B. theobromae |
---|---|---|---|---|
Control | 4 | 4 | 4 | 4 |
Acetic acid | 3 | 3 | 3 | 3 |
Propionic acid | 3 | 3 | 3 | 3 |
Oxalic acid | 3 | 3 | 2 | 2 |
Citric acid | 3 | 2 | 2 | 2 |
Hydrochloric acid | 2 | 2 | 2 | 2 |
Parameter | Acetic Acid | Propionic Acid | Oxalic Acid | Citric Acid | Hydrochloric Acid |
---|---|---|---|---|---|
∆L* | –4.329 | –2.945 | –4.897 | –4.979 | –6.127 |
∆a* | 0.46 | 0.249 | 1.557 | 0.22 | 2.214 |
∆b* | –2.747 | –3.578 | –2.276 | –3.304 | –2.061 |
∆E* | 5.15 | 4.64 | 5.62 | 5.98 | 6.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Zhang, X.; Zhang, R.; Yu, Y.; Sun, F. Improving the Mould and Blue-Stain-Resistance of Bamboo through Acidic Hydrolysis. Polymers 2022, 14, 244. https://doi.org/10.3390/polym14020244
Yu Z, Zhang X, Zhang R, Yu Y, Sun F. Improving the Mould and Blue-Stain-Resistance of Bamboo through Acidic Hydrolysis. Polymers. 2022; 14(2):244. https://doi.org/10.3390/polym14020244
Chicago/Turabian StyleYu, Zixuan, Xiaofeng Zhang, Rong Zhang, Yan Yu, and Fengbo Sun. 2022. "Improving the Mould and Blue-Stain-Resistance of Bamboo through Acidic Hydrolysis" Polymers 14, no. 2: 244. https://doi.org/10.3390/polym14020244
APA StyleYu, Z., Zhang, X., Zhang, R., Yu, Y., & Sun, F. (2022). Improving the Mould and Blue-Stain-Resistance of Bamboo through Acidic Hydrolysis. Polymers, 14(2), 244. https://doi.org/10.3390/polym14020244