Physical and Mechanical Properties of Tilapia Scale Hydroxyapatite-Filled High-Density Polyethylene Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Processing of Hydroxyapatite (HAp) Powder
2.3. Surface Treatment of Hydroxyapatite (HAp) Powder
2.4. Compounding and Fabrication of Composites
2.5. Characterization Techniques
2.5.1. Particle Size Analysis
2.5.2. Density Measurement
2.5.3. Fourier Transform Infrared (FTIR)
2.5.4. Different Scanning Calorimetry (DSC) Analysis
2.5.5. Tensile Test
2.5.6. Flexural Test
2.5.7. Impact Test
2.5.8. Scanning Electron Microscopy (SEM)
2.5.9. In Vitro Cytotoxicity Test
3. Results and Discussion
3.1. Particle Size Analysis and Microstructure of HAp Powder
3.2. Density of Pure High-Density Polyethylene (HDPE) and HDPE/HAp Composites
3.3. Fourier Transform Infrared (FTIR) Spectroscopy of Pure HDPE and HDPE/HAp Composites
3.4. Different Scanning Calorimetry (DSC) Analysis
3.5. Tensile Properties
3.6. Flexural Properties
3.7. Impact Energy
3.8. Cytotoxicity of HDPE/HAp Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nath, S.; Kalmodia, S.; Basu, B. Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt. % silver composites. J. Mater. Sci. Mater. Med. 2010, 21, 1273–1287. [Google Scholar] [CrossRef]
- Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M. Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nano-composite. Radiat. Phys. Chem. 2017, 130, 229–235. [Google Scholar] [CrossRef]
- Glimcher, M.J. Bone: Nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev. Mineral. Geochem. 2006, 64, 223–282. [Google Scholar] [CrossRef]
- Afshar, A.; Ghorbani, M.; Ehsani, N.; Saeri, M.R.; Sorrell, C.C. Some important factors in the wet precipitation process of hydroxyapatite. Mater. Des. 2003, 24, 197–202. [Google Scholar] [CrossRef]
- Abdulrahman, I.; Tijani, H.I.; Mohammed, B.A.; Saidu, H.; Yusuf, H.; Jibrin, M.N.; Mohammed, S. From garbage to biomaterials: An overview on egg shell based hydroxyapatite. J. Mater. 2014, 2014, 802467. [Google Scholar] [CrossRef]
- Franklin, D.S.; Guhanathan, S. Performance of silane-coupling agent-treated hydroxyapatite/diethylene glycol-based pH-sensitive biocomposite hydrogels. Iran. Polym. J. 2014, 23, 809–817. [Google Scholar] [CrossRef]
- Haraguchi, K. Biocomposites. In Encyclopedia of Polymeric Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–8. [Google Scholar]
- Maddah, H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar]
- Khan, I.; Hussain, G.; Al-Ghamdi, K.; Umer, R. Investigation of impact strength and hardness of UHMW polyethylene composites reinforced with nano-hydroxyapatite particles fabricated by friction stir processing. Polymers 2019, 11, 1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallet-Regi, M. Bio-Ceramics with Clinical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Pourdanesh, F.; Jebali, A.; Hekmatimoghaddam, S.; Allaveisie, A. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles. Mater. Sci. Eng. C 2014, 40, 382–388. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, J.; Fan, T.; Zhang, Y.; Zhao, Y.; Shi, X.; Zhang, Q. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. Colloids Surf. B Biointerfaces 2017, 157, 93–100. [Google Scholar] [CrossRef]
- Oladele, I.O.; Agbabiaka, O.G.; Adediran, A.A.; Akinwekomi, A.D.; Balogun, A.O. Structural performance of poultry eggshell derived hydroxyapatite based high density polyethylene bio-composites. Heliyon 2019, 5, e02552. [Google Scholar] [CrossRef] [Green Version]
- Aherwar, A.; Singh, A.K.; Patnaik, A. Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioeng. 2016, 3, 23–43. [Google Scholar] [CrossRef]
- Choy, M.T.; Tang, C.Y.; Chen, L.; Wong, C.T.; Tsui, C.P. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique. Mater. Sci. Eng. C 2014, 42, 746–756. [Google Scholar] [CrossRef]
- Jaggi, B.; Mitra, S.; Hossain, M. Earnings quality, internal control weaknesses and industry-specialist audits. Rev. Quant. Financ. Account. 2015, 45, 1–32. [Google Scholar] [CrossRef]
- Tanner, K.E.; Downes, R.N.; Bonfield, W. Clinical applications of hydroxyapatite reinforced materials. Br. Ceram. Trans. 1994, 93, 104–107. [Google Scholar]
- Bonfield, W.; Grynpas, M.D.; Tully, A.E.; Bowman, J.; Abram, J. Hydroxyapatite reinforced polyethylene—A mechanically compatible implant material for bone replacement. Biomaterials 1981, 2, 185–186. [Google Scholar] [CrossRef]
- Lindfors, N.; Geurts, J.; Drago, L.; Arts, J.J.; Juutilainen, V.; Hyvönen, P.; Suda, A.J.; Domenico, A.; Artiaco, S.; Alizadeh, C.; et al. Antibacterial bioactive glass, S53P4, for chronic bone infections—A multinational study. In A Modern Approach to Biofilm-Related Orthopaedic Implant Infections; Springer: Cham, Switzerland, 2016; pp. 81–92. [Google Scholar]
- Zakaria, S.M.; Sharif Zein, S.H.; Othman, M.R.; Yang, F.; Jansen, J.A. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: A review. Tissue Eng. Part B Rev. 2013, 19, 431–441. [Google Scholar] [CrossRef]
- Oladele, I.O.; Agbabiaka, O.G.; Olasunkanmi, O.G.; Balogun, A.O.; Popoola, M.O. Non-synthetic sources for the development of hydroxyapatite. J. Appl. Biotechnol. Bioeng 2018, 5, 88–95. [Google Scholar]
- Ayyanar, C.B.; Marimuthu, K.; Gayathri, B.; Sankarrajan. Characterization and in vitro cytotoxicity evaluation of fish scale and seashell derived nano-hydroxyapatite high-density polyethylene composite. Polym. Polym. Compos. 2020, 29, 1534–1542. [Google Scholar] [CrossRef]
- Fara, A.; Khalis, A.N.; bin Yahya, M.A.; Abdullah, H.Z. Preparation and characterization of biological hydroxyapatite (HAp) obtained from Tilapia fish bone. Adv. Mater. Res. 2015, 1087, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Kusrini, E.; Pudjiastuti, A.R.; Astutiningsih, S.; Harjanto, S. Preparation of hydroxyapatite from bovine bone by combination methods of ultrasonic and spray drying. In Proceedings of the International Conference on Chemical, Bio-Chemical and Environmental Sciences (ICBEE’2012), Singapore, 14–15 December 2012. [Google Scholar]
- Hoyer, B.; Bernhardt, A.; Heinemann, S.; Stachel, I.; Meyer, M.; Gelinsky, M. Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules 2012, 13, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.J.; Lu, Y.P.; Zhu, R.F.; Li, S.T.; Ma, X.L. Effect of process parameters on the performance of spray dried hydroxyapatite microspheres. Powder Technol. 2009, 191, 6. [Google Scholar] [CrossRef]
- FAO. Fishery Statistical Collections: Consumption of Fish and Fishery Products. Available online: www.fao.org/fishery/statistics/global-consumption/en (accessed on 2 August 2021).
- Mustaffa, N.A. Nano Alumina Radiation Effect on Thermo-mechanical Properties of High Density Polyethylene-hydroxyapatite Composite. Ph.D. Thesis, Universiti Putra Malaysia, Serdang, Malaysia, 2021. [Google Scholar]
- Sombatsompop, N.; Chaochanchaikul, K. Average mixing torque, tensile and impact properties, and thermal stability of poly (vinyl chloride)/sawdust composites with different silane coupling agents. J. Appl. Polym. Sci. 2005, 96, 213–221. [Google Scholar] [CrossRef]
- Ismail, S.H.; Abu Bakar, A. The effect of compatibilizer and coupling agent on the properties of paper sludge filled polypropylene (PP)/ethylene propylene diene terpolymer (EPDM) composites. Polym. Plast. Technol. Eng. 2005, 44, 863–879. [Google Scholar] [CrossRef]
- ASTM D3641-15, Standard Practice for Injection Molding Test; Specimens of Thermoplastic Molding and Extrusion Materials. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM D638-14, Standard Test; Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D790-17, Standard Test; Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D256-10, Standard Test; Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International: West Conshohocken, PA, USA, 2018.
- ISO 10993-5(E); Biological Evaluation of Medical Devices—Part. 5: Test. for In Vitro Xytotoxicity; ISO: Arlington, VA, USA, 2008.
- Fadda, S.; Cincotti, A.; Concas, A.; Pisu, M.; Cao, G. Modelling breakage and reagglomeration during fine dry grinding in ball milling devices. Powder Technol. 2009, 194, 207–216. [Google Scholar] [CrossRef]
- Al-Khattawi, A.; Bayly, A.; Phillips, A.; Wilson, D. The design and scale-up of spray dried particle delivery systems. Expert Opin. Drug Deliv. 2018, 15, 47–63. [Google Scholar] [CrossRef]
- Monmaturapoj, N.; Yathongchai, C.; Soodsawang, W. Preparation of hydroxyapatite powder by a spray dry method. Asia-Pac. J. Sci. Technol. 2008, 13, 715–722. [Google Scholar]
- Smoleń, D.; Chudoba, T.; Gierlotka, S.; Kedzierska, A.; Łojkowski, W.; Sobczak, K.; Święszkowski, W.; Kurzydłowski, K.J. Hydroxyapatite nanopowder synthesis with a programmed resorption rate. J. Nanomater. 2012, 2012, 9. [Google Scholar] [CrossRef]
- Atiqah, A.; Jawaid, M.; Sapuan, S.M.; Ishak, M.R. Mechanical and thermal properties of sugar palm fiber reinforced thermoplastic polyurethane composites: Effect of silane treatment and fiber loading. J. Renew. Mater. 2018, 6, 477–492. [Google Scholar] [CrossRef]
- Liu, Q.; Ding, J.; Chambers, D.E.; Debnath, S.; Wunder, S.L.; Baran, G.R. Filler-coupling agent-matrix interactions in silica/polymethylmethacrylate composites. J. Biomed. Mater. Res. 2001, 57, 384–393. [Google Scholar] [CrossRef]
- Lim, K.L.K.; Ishak, Z.M.; Ishiaku, U.S.; Fuad, A.M.Y.; Yusof, A.H.; Czigany, T.; Pukanzsky, B.; Ogunniyi, D.S. High density polyethylene/ultra high molecular weight polyethylene blend. II. Effect of hydroxyapatite on processing, thermal, and mechanical properties. J. Appl. Polym. Sci. 2006, 100, 3931–3942. [Google Scholar] [CrossRef]
- Liu, T.; Huang, K.; Li, L.; Gu, Z.; Liu, X.; Peng, X.; Kuang, T. High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: Fabrication, in vitro and in vivo biocompatibility evaluation. Compos. Sci. Technol. 2019, 175, 100–110. [Google Scholar] [CrossRef]
- Lee, M.; Kim, Y.; Ryu, H.; Baeck, S.H.; Shim, S.E. Effects of silane coupling agent on the mechanical and thermal properties of silica/polypropylene composites. Polym. Korea 2017, 41, 599–609. [Google Scholar] [CrossRef]
- Herrera-Franco, P.J.; Valadez-Gonzalez, A. Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos. Part. A Appl. Sci. Manuf. 2004, 35, 339–345. [Google Scholar] [CrossRef]
- Ohgaki, M.; Yamashita, K. Preparation of polymethylmethacrylate-reinforced functionally graded hydroxyapatite composites. J. Am. Ceram. Soc. 2003, 86, 1440–1442. [Google Scholar] [CrossRef]
- Damadzadeh, B.; Jabari, H.; Skrifvars, M.; Airola, K.; Moritz, N.; Vallittu, P.K. Effect of ceramic filler content on the mechanical and thermal behaviour of poly-l-lactic acid and poly-l-lactic-co-glycolic acid composites for medical applications. J. Mater. Sci. Mater. Med. 2010, 21, 2523–2531. [Google Scholar] [CrossRef]
- Boynard, C.A.; Monteiro, S.N.; d’Almeida, J.R.M. Aspects of alkali treatment of sponge gourd (Luffa cylindrica) fibers on the flexural properties of polyester matrix composites. J. Appl. Polym. Sci. 2003, 87, 1927–1932. [Google Scholar] [CrossRef]
- Cantero, G.; Arbelaiz, A.; Llano-Ponte, R.; Mondragon, I. Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos. Sci. Technol. 2003, 63, 1247–1254. [Google Scholar] [CrossRef]
Designation | Composition (wt. %) | |
---|---|---|
HDPE | HAp | |
HDPE | 100 | 0 |
HDPE/10HAp | 90 | 10 |
HDPE/15HAp | 85 | 15 |
HDPE/20HAp | 80 | 20 |
HDPE/30HAp | 70 | 30 |
HDPE/30HAp-S (Treated) | 70 | 30 |
Particle Size (µm) | |||
---|---|---|---|
Milling Time | D0.5 | D0.1 | D0.9 |
0 h | 445.977 | 202.928 | 780.832 |
24 h | 2.455 | 0.772 | 7.462 |
48 h | 1.859 | 0.708 | 5.919 |
72 h | 2.061 | 0.854 | 3.766 |
Sources | |||
HAp slurry | 4.666 | 0.767 | 24.717 |
Main chamber (MC) | 5.674 | 0.829 | 26.802 |
Secondary chamber 1 (SC1) | 6.359 | 0.854 | 20.735 |
Secondary chamber 2 (SC1) | 2.178 | 0.699 | 22.629 |
Mixture (MC + SC1 + SC2) | 5.180 | 0.810 | 23.343 |
Sample | HAp content (wt. %) | Experimental Density (g/cm3) | Theoretical Density (g/cm3) |
---|---|---|---|
HAp powder | 2.469 | 2.469 | |
HDPE/0HAp | 0 | 0.93 | 0.93 |
HDPE/10HAp | 10 | 1.01 | 1.09 |
HDPE/15HAp | 15 | 1.05 | 1.16 |
HDPE/20HAp | 20 | 1.12 | 1.24 |
HDPE/30HAp | 30 | 1.18 | 1.39 |
HDPE/30HAp-S | 30 | 1.17 | 1.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiza Jaafar, C.N.; Zainol, I.; Izyan Khairani, M.I.; Dele-Afolabi, T.T. Physical and Mechanical Properties of Tilapia Scale Hydroxyapatite-Filled High-Density Polyethylene Composites. Polymers 2022, 14, 251. https://doi.org/10.3390/polym14020251
Aiza Jaafar CN, Zainol I, Izyan Khairani MI, Dele-Afolabi TT. Physical and Mechanical Properties of Tilapia Scale Hydroxyapatite-Filled High-Density Polyethylene Composites. Polymers. 2022; 14(2):251. https://doi.org/10.3390/polym14020251
Chicago/Turabian StyleAiza Jaafar, C. N., I. Zainol, M. I. Izyan Khairani, and T. T. Dele-Afolabi. 2022. "Physical and Mechanical Properties of Tilapia Scale Hydroxyapatite-Filled High-Density Polyethylene Composites" Polymers 14, no. 2: 251. https://doi.org/10.3390/polym14020251
APA StyleAiza Jaafar, C. N., Zainol, I., Izyan Khairani, M. I., & Dele-Afolabi, T. T. (2022). Physical and Mechanical Properties of Tilapia Scale Hydroxyapatite-Filled High-Density Polyethylene Composites. Polymers, 14(2), 251. https://doi.org/10.3390/polym14020251