Succinyl-κ-carrageenan Silver Nanotriangles Composite for Ammonium Localized Surface Plasmon Resonance Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparation of Succinyl Kappa-Carrageenan
2.3. Preparation of AgNP
2.4. Preparation of AgNP LSPR Glass Slide via the Composite Method
2.5. Experimental Setup for Detection of NH4+ Ion Using LSPR Sensor
2.6. Characterisation
2.7. Interaction Mechanism Study
- KL = adsorption equilibrium constant (L/mg)
- qmax = maximum ammonium ion adsorption capacity (mg/g)
- qe = adsorption capacity (mg/g) at equilibrium
- The value of qmax is obtained from a linear plot of Ce/qe versus Ce.
- KF = adsorption capacity
- n = adsorption intensity, respectively.
- KF and n are obtained from the slope and intercept of the linear log qe versus log Ce.
- qt = the adsorption capacity at time t (min).
- k1 = adsorption rate constants of pseudo-first-order (min−1)
- k2 = pseudo-second-order adsorption rates (g mg−1 min−1)
3. Results and Discussion
3.1. Surface Studies of Sensing Materials for LSPR
3.2. Detection of NH4+ Using LSPR Technique
3.3. Interaction Mechanism Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.P.; Zhang, J.Z.; Millero, F.J.; Hansell, D.A. Continuous colorimetric determination of trace ammonium in seawater with a long-path liquid waveguide capillary cell. Mar. Chem. 2005, 96, 73–85. [Google Scholar] [CrossRef]
- Abu-Saied, M.A.; Wycisk, R.; Abbassy, M.M.; El-Naim, G.A.; El-Demerdash, F.; Youssef, M.E.; Bassuony, H.; Pintauro, P.N. Sulfated chitosan/PVA absorbent membrane for removal of copper and nickel ions from aqueous solutions—Fabrication and sorption studies. Carbohydr. Polym. 2017, 165, 149–158. [Google Scholar] [CrossRef]
- Abdullah, S.; Azeman, N.H.; Mobarak, N.N.; Zan, M.S.D.; Bakar, A.A.A. Sensitivity enhancement of localised SPR sensor towards Pb(II) ion detection using natural bio-polymer based carrageenan. Optik 2018, 168, 784–793. [Google Scholar] [CrossRef]
- Azeman, N.H.; Arsad, N.; Bakar, A.A.A. Polysaccharides as the Sensing Material for Metal Ion Detection-Based Optical Sensor Applications. Sensors 2020, 20, 3924. [Google Scholar] [CrossRef] [PubMed]
- Sugunan, A.; Thanachayanont, C.; Dutta, J.; Hilborn, J.G. Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci. Technol. Adv. Mater. 2005, 6, 335–340. [Google Scholar] [CrossRef]
- Wei, J.L.Y.; Loh, K.S.; Ahmad, A.; Lim, K.L.; Wan, W.R. Synthesis and characterisation of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane. PLoS ONE 2017, 12, e0185313. [Google Scholar]
- Abu Bakar, M.H.; Azeman, N.H.; Mobarak, N.N.; Mokhtar, M.H.H.; Bakar, A.A.A. Effect of active site modification towards performance enhancement in biopolymer κ-Carrageenan derivatives. Polymers 2020, 12, 2040. [Google Scholar] [CrossRef]
- Mobarak, N.N.; Jumaah, F.N.; Ghani, M.A.; Abdullah, M.P.; Ahmad, A. Carboxymethyl Carrageenan Based Biopolymer Electrolytes. Electrochim. Acta 2015, 175, 224–231. [Google Scholar] [CrossRef]
- Umar, A.A.; Salleh, M.M.; Bakar, N.A. Detection of creatinine on triangular silver nanoplates surface using surface-enhanced Raman scattering sensor. Int. J. Biomed. Nanosci. Nanotechnol. 2017, 3, 335. [Google Scholar] [CrossRef]
- Bakar, N.A.; Shapter, J.G.; Salleh, M.M.; Umar, A.A. Self-Assembly of high density of triangular silver nanoplate films promoted by 3-aminopropyltrimethoxysilan. Appl. Sci. 2015, 5, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, M.; Kumari, A.; Shrestha, S. Arsenic Removal from Water by Adsorption onto Iron Oxide/Nano-Porous Carbon Magnetic Composite. Appl. Sci. 2019, 9, 3732. [Google Scholar] [CrossRef] [Green Version]
- Senthil Kumar, P.; Ramakrishnan, K.; Gayathri, R. Removal of nickel(II) from aqueous solutions by ceralite ir 120 cationic exchange resins. J. Eng. Sci. Technol. 2010, 5, 234–245. [Google Scholar]
- Liu, C.; Omer, A.M.; Ouyang, X.-K. Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and kinetic studies. Int. J. Biol. Macromol. 2018, 106, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Lokman, N.F.; Azeman, N.H.; Suja, F.; Bakar, A.A.A. Sensitivity enhancement of Pb(II) ion detection in rivers using SPR-based Ag metallic layer coated with chitosan–graphene oxide nanocomposite. Sensors 2019, 19, 5159. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Liu, C.; Li, R.; Wang, J. Properties and structural characterization of chitosan/graphene oxide biocomposites. Biomed. Mater. Eng. 2012, 22, 129–135. [Google Scholar] [CrossRef]
- Lokman, N.F.; Bakar, A.A.A.; Suja, F.; Abdullah, H.; Rahman, W.B.W.A.; Huang, N.M.; Yaacob, M.H. Highly sensitive SPR response of Au/chitosan/graphene oxide nanostructured thin films toward Pb (II) ions. Sens. Actuators B Chem. 2014, 195, 459–466. [Google Scholar] [CrossRef]
- Nazri, N.A.A.; Azeman, N.H.; Luo, Y.; Bakar, A.A.A. Carbon quantum dots for optical sensor applications. Opt. Laser Technol. 2021, 139, 106928. [Google Scholar] [CrossRef]
- Molins-Legua, C.; Meseguer-Lloret, S.; Moliner-Martinez, Y.; Campı’ns-Falco, P. A guide for selecting the most appropriate method for ammonium determination in water analysis. Trends Anal. Chem. 2006, 25, 282–290. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J.; Yin, T.; Jia, J.; Ding, Q.; Zheng, H.; Chen, C.T.A.; Ye, Y. A novel all-solid-state ammonium electrode with polyaniline and copolymer of aniline/2,5-dimethoxyaniline as transducers. J. Electroanal. Chem. 2015, 741, 87–92. [Google Scholar] [CrossRef]
- Peters, J.J.; Almeida, M.I.G.S.; O’Connor Šraj, L.; McKelvie, I.D.; Kolev, S.D. Development of a micro-distillation microfluidic paper-based analytical device as a screening tool for total ammonia monitoring in freshwaters. Anal. Chim. Acta 2019, 1079, 120–128. [Google Scholar] [CrossRef]
- Tang, S.; Cao, Z. Adsorption and dissociation of ammonia on graphene oxides: A first-principles study. J. Phys. Chem. C 2012, 116, 8778–8791. [Google Scholar] [CrossRef]
- Tadi, K.K.; Pal, S.; Narayanan, T.N. Fluorographene based Ultrasensitive Ammonia Sensor. Sci. Rep. 2016, 6, 25221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, S.S.; Gusain, R.; Kumar, N. Effect of reaction parameters on the adsorption. In Micro and Nano Technologies, Carbon Nanomaterial-Based Adsorbents for Water Purification; Ray, S.S., Gusain, R., Kumar, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 119–135. [Google Scholar]
- Fakhri, A. Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: Kinetics, thermodynamics, and mechanism studies. J. Saudi Chem. Soc. 2017, 21, S52–S57. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, S.I.; Kaiser Ahmad, M.; Ahmad, S. Removal of Pb(II) and Cd(II) from wastewater using arginine cross-linked chitosan–carboxymethyl cellulose beads as green adsorbent. R. Soc. Chem. 2019, 9, 7890–7902. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, S.T.; Yin, Y.N.; Wang, J.L. Simultaneous detection and removal of cobalt ions from aqueous solution by modified chitosan beads. Int. J. Environ. Sci. Technol. 2018, 15, 385–394. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, T.; Shi, X.; Wen, G.; Sun, Y. Removal of ammonium ion from water by Na-rich birnessite: Performance and mechanisms. J. Environ. Sci. 2017, 57, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Spies, A.R.L.; Wewers, F. Equilibrium, kinetics and thermodynamics studies of Cd sorption onto a dithizone-impregnated Amberchrom CG-300m polymer resin. Arab. J. Chem. 2020, 13, 5050–5059. [Google Scholar] [CrossRef]
- Duman, O.; Polat, T.G.; Diker, C.Ö.; Tunç, S. Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. Int. J. Biol. Macromol. 2020, 160, 823–835. [Google Scholar] [CrossRef] [PubMed]
Compound | Average Surface Roughness, ra (nm) |
---|---|
AgNP | 20.777 |
AgNP-κ–carrageenan | 27.265 |
AgNP-succinyl-κ–carrageenan | 198.535 |
Compound | Sensitivity (nm ppm−1) | Regression (R2) | LOD (ppm) | LOQ (ppm) | Range of Detection (ppm) | Reference |
---|---|---|---|---|---|---|
AgNP | 0.0962 | 0.0999 | 20.7618 | 62.9146 | - | This work |
AgNP-κ–carrageenan | 0.1601 | 0.8662 | 2.7192 | 8.2400 | 2.7–6.0 | This work |
AgNP-succinyl-κ-carrageenan | 0.6289 | 0.9947 | 0.5964 | 2.7192 | 0.6–10.0 | This work |
Standard Method Indophenol Reagent | - | - | 0.160 | - | 0.35–1.8 | [19] |
Standard Method Nessler Reagent | - | - | 0.6 | - | 0.85–5.0 | [19] |
PANi, CPANI, Ag (electrochemical) | - | - | - | - | 3.6–3550 | [20] |
μPAD (colorimetric pH indicator) | - | 0.999 | 0.47 | - | 2.0–10.0 | [21] |
Isotherm and Kinetic Model | Variable | κ-Carrageenan | Succinyl-κ-carrageenan |
---|---|---|---|
Langmuir | Qmax (mg/g) | 0.053 | 3.215 |
KL (L/mg) | 2.1679 | 0.0558 | |
RL | 0.8218 | 0.9471 | |
R2 | 0.6138 | 0.0046 | |
Freundlich | KF (g mg−1 min−1) | 0.0380 | 0.1774 |
1/n | 0.5037 | 0.9797 | |
R2 | 0.7546 | 0.9076 | |
Pseudo-first-order | qe (mg/g) | 0.9911 | 1.0051 |
k1 (min−1) | 3.8096 | 2.7102 | |
R2 | 0.2436 | 0.7947 | |
Pseudo-second-order | qe (mg/g) | 0.0193 | 0.0112 |
k2 (g min−1) | 229.0380 | 677.8876 | |
R2 | 0.9822 | 0.9863 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Bakar, M.H.; Azeman, N.H.; Mobarak, N.N.; Ahmad Nazri, N.A.; Tengku Abdul Aziz, T.H.; Md Zain, A.R.; Arsad, N.; Bakar, A.A.A. Succinyl-κ-carrageenan Silver Nanotriangles Composite for Ammonium Localized Surface Plasmon Resonance Sensor. Polymers 2022, 14, 329. https://doi.org/10.3390/polym14020329
Abu Bakar MH, Azeman NH, Mobarak NN, Ahmad Nazri NA, Tengku Abdul Aziz TH, Md Zain AR, Arsad N, Bakar AAA. Succinyl-κ-carrageenan Silver Nanotriangles Composite for Ammonium Localized Surface Plasmon Resonance Sensor. Polymers. 2022; 14(2):329. https://doi.org/10.3390/polym14020329
Chicago/Turabian StyleAbu Bakar, Mohd Hafiz, Nur Hidayah Azeman, Nadhratun Naiim Mobarak, Nur Afifah Ahmad Nazri, Tengku Hasnan Tengku Abdul Aziz, Ahmad Rifqi Md Zain, Norhana Arsad, and Ahmad Ashrif A. Bakar. 2022. "Succinyl-κ-carrageenan Silver Nanotriangles Composite for Ammonium Localized Surface Plasmon Resonance Sensor" Polymers 14, no. 2: 329. https://doi.org/10.3390/polym14020329
APA StyleAbu Bakar, M. H., Azeman, N. H., Mobarak, N. N., Ahmad Nazri, N. A., Tengku Abdul Aziz, T. H., Md Zain, A. R., Arsad, N., & Bakar, A. A. A. (2022). Succinyl-κ-carrageenan Silver Nanotriangles Composite for Ammonium Localized Surface Plasmon Resonance Sensor. Polymers, 14(2), 329. https://doi.org/10.3390/polym14020329