The Effect of the Synthesis Method on Physicochemical Properties of Selective Granular Polymer Sorbents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Synthesis of Polymer Sorbents
2.2.1. The Synthesis by Pickering Emulsion Polymerization
2.2.2. The Synthesis by Precipitation Polymerization in Solution
2.3. Purification of Synthesized Polymers
2.4. The Method for Determining the Concentration of Cholesterol
2.5. Physicochemical Properties of Polymers
2.6. Scanning Electron Microscopy
2.7. Swelling Kinetics of Polymers
2.8. The Equilibrium Sorption of Cholesterol on Synthesized Sorbents
2.9. Sorption Isotherm Models
2.10. The Dynamic Sorption of Cholesterol
2.11. The Dynamic Sorption of Cholic Acid
2.12. Determination of Cholic Acid Concentration
3. Results
3.1. Synthesis of Polymer Sorbents
3.2. The Morphology of Synthesized Polymers
3.3. Kinetics of Swelling of Polymers
3.4. Physicochemical Properties of Polymers
3.5. Equilibrium Sorption of Cholesterol by Synthesized Sorbents
3.6. Analysis of Experimental Sorption Isotherms by Theoretical Models
3.6.1. Langmuir Model
3.6.2. Freundlich Model
3.6.3. Brunauer–Emmett–Teller Model
3.7. The Area of the Available Sorption Surface
3.8. Dynamic Sorption of Cholesterol
3.9. Study of the Selectivity of Sorption
3.10. The Extraction of Cholesterol from Blood Plasma
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azzouz, A.; Kailasa, S.K.; Lee, S.S.; Rascón, A.J.; Ballesteros, E.; Zhang, M.; Kim, K.-H. Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. Trends Anal. Chem. 2018, 108, 347–369. [Google Scholar] [CrossRef]
- Sapurina, I.Y.; Shishov, M.A.; Ivanova, V.T. Sorbents for water purification based on conjugated polymers. Russ. Chem. Rev. 2020, 89, 1115–1131. [Google Scholar] [CrossRef]
- Anito, D.A.; Wang, T.-X.; Liu, Z.-W.; Ding, X.; Han, B.-H. Iminodiacetic acid-functionalized porous polymer for removal of toxic metal ions from water. J. Hazard. Mater. 2020, 400, 123188. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Chen, W.; Mab, Y.; Pan, G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev. 2018, 47, 5574–5587. [Google Scholar] [CrossRef]
- Odabasi, M.; Uzun, L.; Baydemir, G.; Aksoy, N.H.; Acet, O.; Erdonmez, D. Cholesterol imprinted composite membranes for selective cholesterol recognition from intestinal mimicking solution. Colloid Surf. B 2018, 163, 266–274. [Google Scholar] [CrossRef]
- Fan, J.; Cheng, Y.; Zhang, X. Preparation of a novel mixed non-covalent and semi-covalent molecularly imprinted membrane with hierarchical pores for separation of genistein in Radix Puerariae Lobatae. React. Funct. Polym. 2020, 146, 104439. [Google Scholar] [CrossRef]
- Pešić, M.; Todorov, M.; Becskereki, G. A novel method of molecular imprinting applied to the template cholesterol. Talanta 2020, 217, 121075. [Google Scholar] [CrossRef]
- Tarannum, N.; Hendrickson, O.D.; Khatoon, S.; Zherdev, A.V.; Dzantiev, B.B. Molecularly imprinted polymers as receptors for assays of antibiotics. Crit. Rev. Anal. Chem. 2020, 50, 291–310. [Google Scholar] [CrossRef]
- Cormack, P.A.G.; Elorza, A.Z. Molecularly imprinted polymers: Synthesis and characterization. J. Chromat. B 2004, 804, 173–182. [Google Scholar] [CrossRef]
- Tuwahatu, C.; Yeung, C.C.; Lam, Y.W.; Roy, V.A.L. The molecularly imprinted polymer essentials: Curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J. Control. Release 2018, 287, 24–34. [Google Scholar] [CrossRef]
- Pereira-da-Mota, A.F.; Vivero-Lopez, M.; Topete, A.; Serro, A.P.; Concheiro, A.; Alvarez-Lorenzo, C. Atorvastatin-eluting contact lenses: Effects of molecular imprinting and sterilization on drug loading and release. Pharmaceutics 2021, 13, 606. [Google Scholar] [CrossRef]
- Madikizela, L.; Tavengwa, N.; Pakade, V. Molecularly Imprinted Polymers for Pharmaceutical Compounds: Synthetic Procedures and Analytical Applications. Recent Research in Polymerization; IntechOpen Lim.: London, UK, 2018; pp. 47–67. [Google Scholar]
- Polyakova, I.; Borovikova, L.; Osipenko, A.; Vlasova, E.; Volchek, B.; Pisarev, O. Surface molecularly imprinted organic-inorganic polymers having affinity sites for cholesterol. React. Funct. Polym. 2016, 109, 88–98. [Google Scholar] [CrossRef]
- Wong, A.; de Oliveira, F.M.; Tarley, C.R.T.; Del Pilar Taboada Sotomayor, M. Study on the cross-linked molecularly imprinted poly(methacrylic acid) and poly(acrylic acid) towards selective adsorption of diuron. React. Func. Polym. 2016, 100, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef]
- Kajisa, T.; Li, W.; Michinobu, T.; Sakata, T. Well-designed dopamine-imprinted polymer interface for selective and quantitative dopamine detection among catecholamines using a potentiometric biosensor. Biosens. Bioelectron. 2018, 117, 810–817. [Google Scholar] [CrossRef]
- Ertürk, G.; Hedström, M.; Mattiasson, B. A Sensitive and real-time assay of trypsin by using molecular imprinting-based capacitive biosensor. Biosens. Bioelectron. 2016, 86, 557–565. [Google Scholar] [CrossRef]
- Serrano, M.; Bartolomé, M.; Bravo, J.C.; Paniagua, G.; Gañan, J.; Gallego-Picó, A.; Garcinuño, R.M. On-line flow injection molecularly imprinted solid phase extraction for the preconcentration and determination of 1-hydroxypyrene in urine samples. Talanta 2017, 166, 375382. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Liu, X.; Yuan, Q.; Zhang, Y.; Li, Y. Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis. Talanta 2019, 199, 573–580. [Google Scholar] [CrossRef]
- Sellergren, B. Polymer- and template-related factors influencing the efficiency in molecularly imprinted solid-phase extractions. Trends Analyt. Chem. 1999, 18, 164–174. [Google Scholar] [CrossRef]
- Zhu, G.; Cheng, G.; Wang, L.; Yu, W.; Wang, P.; Fan, J. A new ionic liquid surface-imprinted polymer for selective solid-phase-extraction and determination of sulfonamides in environmental samples. J. Sep. Sci. 2018, 43, 725. [Google Scholar] [CrossRef]
- Huang, X.H.; Song, J.J.; Li, H.; Gong, M.T.; Zhang, Y. Selective removal of nicotine from the main stream smoke by using a surface-imprinted polymer monolith as adsorbent. J. Hazard. Mater. 2019, 365, 53–63. [Google Scholar] [CrossRef]
- Garkushina, I.S.; Morozova, P.Y.; Osipenko, A.A. Equilibrium sorption of glucose by surface imprinted organo–inorganic sorbents. Russ. J. Phys. Chem. A 2021, 95, 1910. [Google Scholar] [CrossRef]
- Sulitzky, C.; Rückert, B.L.; Hall, A.J.; Lanza, F.; Unger, K.; Sellergren, B. Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators. Macromolecules 2002, 35, 79–91. [Google Scholar] [CrossRef]
- Gong, X.Y.; Cao, X.J. Preparation of molecularly imprinted polymers for artemisinin based on the surfaces of silica gel. J. Biotechnol. 2011, 153, 8–14. [Google Scholar] [CrossRef]
- Lieberzeit, P.A.; Dickert, F.L. Rapid Bioanalysis with chemical sensors: Novel strategies for devices and artificial recognition membranes. Anal. Bioanal. Chem. 2008, 391, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cui, Y.; Wang, J.; Wang, J. Preparation of fluorescent molecularly imprinted polymers via Pickering emulsion interfaces and the application for visual sensing analysis of Listeria Monocytogenes. Polymers 2019, 11, 984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhi, K.; Wang, L.; Zhang, Y.; Jiang, Y.; Zhang, L.; Yasin, A. Influence of size and shape of silica supports on the sol–gel surface molecularly imprinted polymers for selective adsorption of gossypol. Materials 2018, 11, 777. [Google Scholar] [CrossRef] [Green Version]
- He, J.-X.; Pan, H.-Y.; Xu, L.; Tang, R.-Y. Application of molecularly imprinted polymers for the separation and detection of aflatoxin. J. Chem. Res. 2020, 45, 400–410. [Google Scholar] [CrossRef]
- Lovell, P.A.; Schork, F.J. Fundamentals of emulsion polymerization. Biomacromolecules 2020, 21, 4396–4441. [Google Scholar] [CrossRef]
- Long, B.; Lv, S.; Xiang, W.; Huan, S.; McClements, D.J.; Rojas, O.J. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability. Food Hydrocoll. 2019, 96, 699–708. [Google Scholar] [CrossRef]
- Xu, Y.T.; Liu, T.X.; Tang, C.H. Novel pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin. Food Hydrocoll. 2019, 88, 21–30. [Google Scholar] [CrossRef]
- Shi, A.; Feng, X.; Wang, Q.; Adhikari, B. Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocoll. 2020, 106117. [Google Scholar] [CrossRef]
- Chevalier, Y.; Bolzinger, M.A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Zhu, H.; Lei, L.; Li, B.-G.; Zhu, S. Development of novel materials from polymerization of Pickering emulsion templates. Adv. Polym. Sci. 2017, 280, 101–119. [Google Scholar] [CrossRef]
- Gonzalez, O.D.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Current trends in Pickering emulsions: Particle morphology and applications. Engineering 2020, 6, 468–482. [Google Scholar] [CrossRef]
- McGowan, M.P.; Hosseini Dehkordi, S.H.; Moriarty, P.M.; Duell, P.B. Diagnosis and treatment of heterozygous familial hypercholesterolemia. J. Am. Heart Assoc. 2019, 8, e013225. [Google Scholar] [CrossRef]
- Yamaji, K. Immunoadsorption for collagen and rheumatic diseases. Transf. Apher. Sci. 2017, 56, 666–670. [Google Scholar] [CrossRef]
- Hui, Y.; Zhu, Y.; Mu, B.; Hui, A.; Wang, A. Removal of a cationic dye from aqueous solution by a porous adsorbent templated from eco-friendly Pickering MIPEs using chitosan-modified semi-coke particles. New J. Chem. 2021, 45, 3848. [Google Scholar] [CrossRef]
- Huang, C. Preparation of a reversed-phase/anion-exchange mixed-mode spherical sorbent by Pickering emulsion polymerization for highly selective solid-phase extraction of acidic pharmaceuticals from wastewater. J. Chromatogr. A 2017, 1521, 1–9. [Google Scholar] [CrossRef]
- Kopeikin, V.V.; Valuyeva, S.V.; Kipper, A.I.; Borovikova, L.N.; Filippov, A.P. Synthesis of selenium nanoparticles in aqueous solutions of polyvinylpyrrolidone and morphological characteristics of the resulting nanocomposites. Polym. Sci. Ser. A 2003, 45, 615–622. [Google Scholar]
- Li, Q.; Tianfeng, C.; Fang, Y.; Jie, L.; Wenjie, Z. Facile and controllable one-step fabrication of selenium nanoparticles assisted by L-cysteine. Mater. Lett. 2010, 64, 614–617. [Google Scholar] [CrossRef]
- Polyakova, I.V.; Ezhova, N.M.; Osipenko, A.A.; Pisarev, O.A. Polymer sorbent with the properties of an artificial cholesterol receptor. Russ. J. Phys. Chem. 2015, 89, 312–315. [Google Scholar] [CrossRef]
- Pisarev, O.A.; Polyakova, I.V. Molecularly imprinted polymers based on methacrylic acid and ethyleneglycol dimethacrylate for l -lysine recognition. React. Funct. Polym. 2018, 130, 98–110. [Google Scholar] [CrossRef]
- Osipenko, A.A.; Garkushina, I.S. The equilibrium sorption properties of the polymer surface-imprinted Se-containing sorbents with cholesterol molecules synthesized by Pickering emulsion polymerization. Russ. Chem. Bull. (Int. Ed.) 2022, 2, 113–134. [Google Scholar]
- Bonilla-Petriciolet, A.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E. Adsorption isotherms in liquid phase: Experimental, modeling, and interpretations. In Adsorption Processes for Water Treatment and Purification; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2017; pp. 19–51. [Google Scholar] [CrossRef]
- Carta, G.; Jungbauer, A. Protein Chromatography: Process Development and Scale-Up; Wiley-VCH Verglag GmbH & Co.KGaA: Weinheim, Germany, 2010; pp. 1–345. [Google Scholar] [CrossRef]
- Malarvizhi, R.; Sulochana, N. Sorption isotherm and kinetic studies of methylene blue uptake onto activated carbon prepared from wood apple shell. J. Environ. Prot. Sci. 2008, 2, 40–46. [Google Scholar]
- Chowdhury, S.; Misra, R.; Kushwaha, P.; Das, P. Optimum sorption isotherm by linear and nonlinear methods for safranin onto alkali-treated rice husk. Bioremediat. J. 2011, 15, 77–89. [Google Scholar] [CrossRef]
- Krishna Kumar, A.S.; Jiang, S.-J.; Tseng, W.-L. Effective adsorption of chromium (VI)/Cr (III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. R. Soc. Chem. 2015, 3, 7044. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 2019, 296, 111850. [Google Scholar] [CrossRef]
- Long, C.; Lu, J.; Li, A.; Hu, D. Adsorption of naphthalene onto the carbon adsorbent from waste ion exchange resin: Equilibrium and kinetic characteristics. J. Hazard. Mater. 2008, 150, 656–661. [Google Scholar] [CrossRef]
- Ebadi, A.; Soltan Mohammadzadeh, J.S.; Khudiev, A. Adsorption of methyl tert-butyl ether on perfluorooctyl alumina adsorbents—High concentration range. Chem. Eng. Technol. 2007, 30, 1666–1673. [Google Scholar] [CrossRef]
- Ebadi, A.; Soltan Mohammadzadeh, J.S.; Khudiev, A. What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 2009, 15, 65–73. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. New thermodynamically consistent competitive adsorption isotherm in RPLC. J. Colloid Interface Sci. 2003, 264, 43. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Jasper, E.E.; Ajibola, V.O.; Onwuka, J.C. Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro waste derived activated carbon. Appl. Water Sci. 2020, 10, 132. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H. The use of low temperature van der Waals adsorption isotherms in determining the surface areas of various adsorbents. J. Am. Chem. Soc. 1937, 59, 2682–2689. [Google Scholar] [CrossRef]
- Tremaine, P.R.; Gray, D.G. Determination of Brunauer-Emmett-Teller monolayer capacities by gas-solid chromatography. Anal. Chem. 1976, 48, 380–382. [Google Scholar] [CrossRef]
- De Meyer, F.; Smit, B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl. Acad. Sci. USA 2009, 10, 3654–3658. [Google Scholar] [CrossRef] [Green Version]
- Garkushina, I.S.; Polyakova, I.V.; Pisarev, O.A. Frontal dynamics of erythromycin sorption on monolithic molecularly imprinted polymer sorbents. Russ. J. Phys. Chem. A 2017, 91, 2225–2229. [Google Scholar] [CrossRef]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D.A. Studies in adsorption. Part XI.System of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 111, 3973–3993. [Google Scholar] [CrossRef]
Sorbents | The Amount of Cholesterol mol.% | Yields, % |
---|---|---|
Method 1 | ||
CP-1 | 0 | 67 |
MIP-1-2 | 2 | 76 |
MIP-1-4 | 4 | 82 |
MIP-1-6 | 6 | 83 |
Method 2 | ||
CP-2 | 0 | 81 |
MIP-2-2 | 2 | 90 |
MIP-2-4 | 4 | 95 |
MIP-2-6 | 6 | 97 |
Sorbents | Ksw | ρbulk, g/cm3 | ρtrue, g/cm3 | ε, % | cm3/g | |||
---|---|---|---|---|---|---|---|---|
25 °C | 37 °C | |||||||
in Water | in Propyl Alcohol | in Water | in Propyl Alcohol | |||||
Method 1 | ||||||||
CP-1 | 2.0 | 2.5 | 2.1 | 3.0 | 0.232 | 0.986 | 76 | 1.5 |
MIP-1-2 | 1.9 | 2.0 | 1.9 | 2.5 | 0.165 | 0.952 | 83 | 2.8 |
MIP-1-4 | 2.1 | 2.2 | 2.3 | 2.9 | 0.195 | 0.924 | 81 | 3.1 |
MIP-1-6 | 1.8 | 2.2 | 2.0 | 2.6 | 0.170 | 0.926 | 83 | 3.0 |
Method 2 | ||||||||
CP-2 | 2.3 | 3.1 | 2.4 | 3.6 | 0.194 | 0.880 | 78 | 3.3 |
MIP-2-2 | 2.0 | 2.2 | 2.2 | 2.5 | 0.277 | 0.921 | 70 | 2.7 |
MIP-2-4 | 2.2 | 2.5 | 2.4 | 3.0 | 0.228 | 0.908 | 75 | 3.1 |
MIP-2-6 | 2.1 | 2.4 | 2.3 | 2.6 | 0.242 | 0.920 | 74 | 2.8 |
Constants | CP | MIP-2 | MIP-4 | MIP-6 | CP | MIP-2 | MIP-4 | MIP-6 |
---|---|---|---|---|---|---|---|---|
25 °C | 37 °C | |||||||
Method 1 | ||||||||
KL (L/mmol) | - | 0.55 | - | 0.15 | 2.09 | - | - | 0.05 |
qmax (mmol/g) | - | 0.67 | - | 1.78 | 0.27 | - | - | 2.20 |
R2 | - | 0.9574 | - | 0.9909 | 0.8410 | - | - | 0.9956 |
χ2∙10−3 | - | 1.40 | - | 1.61 | 0.29 | - | - | 0.66 |
Method 2 | ||||||||
KL (L/mmol) | - | - | 0.04 | 0.05 | - | - | 0.12 | - |
qmax (mmol/g) | - | - | 2.19 | 2.09 | - | - | 1.59 | - |
R2 | - | - | 0.9714 | 0.9963 | - | - | 0.9740 | - |
χ2∙10−3 | - | - | 1.53 | 0.34 | - | - | 3.59 | - |
Constants | CP | MIP-2 | MIP-4 | MIP-6 | CP | MIP-2 | MIP-4 | MIP-6 |
---|---|---|---|---|---|---|---|---|
25 °C | 37 °C | |||||||
Method 1 | ||||||||
KF (L/mmol) | 0.06 | 0.24 | 0.04 | 0.19 | 0.18 | 0.07 | 0.07 | 0.09 |
1/nf | 1.43 | 0.90 | 0.73 | 1.06 | 0.19 | 1.03 | 1.08 | 1.08 |
R2 | 0.9999 | 0.9997 | 0.7719 | 0.9911 | 0.9368 | 0.9953 | 0.9999 | 0.9806 |
χ2∙10−5 | 0.03 | 0.29 | 7.99 | 43.80 | 11.37 | 19.42 | 0.07 | 30.44 |
Method 2 | ||||||||
KF (L/mmol) | 0.03 | 0.03 | 0.11 | 0.11 | - | 0.33 | 0.12 | 0.07 |
1/nf | 1.59 | 2.5 | 0.81 | 0.84 | - | 2.00 | 0.41 | 2.31 |
R2 | 0.9996 | 0.9954 | 0.9767 | 0.9913 | - | 0.8704 | 0.9990 | 0.9993 |
χ2∙10−5 | 0.98 | 49.57 | 124 | 51.9 | - | 310 | 0.28 | 6.9 |
Constants | CP | MIP-2 | MIP-4 | MIP-6 | CP | MIP-2 | MIP-4 | MIP-6 |
---|---|---|---|---|---|---|---|---|
25 °C | 37 °C | |||||||
Method 1 | ||||||||
KU (L/mmol) | 0.04 | - | - | 0.03 | - | - | - | 0.01 |
KL (L/mmol) | 0.13 | - | - | 0.29 | - | - | - | 0.08 |
qmax (mmol/g) | 0.94 | - | - | 0.99 | - | - | - | 1.36 |
R2 | 0.9849 | - | - | 0.9632 | - | - | - | 0.9929 |
χ2∙10−3 | 5.35 | - | - | 9.00 | - | - | - | 0.86 |
Method 2 | ||||||||
KU (L/mmol) | - | - | 0.05 | 9.644 × 10−16 | - | - | 2.08 × 10−16 | - |
KL (L/mmol) | - | - | 0.32 | 0.05 | - | - | 0.12 | - |
qmax (mmol/g) | - | - | 0.42 | 2.09 | - | - | 1.59 | - |
R2 | - | - | 0.9931 | 0.9951 | - | - | 0.9675 | - |
χ2∙10−3 | - | - | 1.26 | 0.46 | - | - | 4.49 | - |
Sorbents | T = 25 °C | T = 37 °C | ||||
---|---|---|---|---|---|---|
qmax, mmol/g | N × 1020, mol/g | SSA, m2/g | qmax, mmol/g | N × 1020, mol/g | SSA, m2/g | |
Method 1 | ||||||
CP-1 | - | - | - | 0.18 | 1.08 | 61 |
MIP-1-2 | 0.55 | 3.31 | 185 | 0.53 | 3.19 | 179 |
MIP-1-4 | - | - | - | 0.59 | 3.55 | 199 |
MIP-1-6 | 0.99 | 5.96 | 334 | - | - | - |
Method 2 | ||||||
CP-2 | 0.76 | 4.58 | 256 | 0.33 | 1.99 | 111 |
MIP-2-2 | 1 | 6.02 | 337 | 0.44 | 2.41 | 135 |
MIP-2-4 | 0.42 | 2.53 | 142 | 0.75 | 4.52 | 253 |
MIP-2-6 | - | - | - | 0.83 | 5.00 | 280 |
Sorbent | v, mL·min−1 | Qsorb × 10−2, mmol | qdyn × 10−2, mmol·mL−1 | IF | R, % |
---|---|---|---|---|---|
CP-1 | 0.25 | 6.02 | 2.56 | - | 20 |
0.5 | 4.21 | 1.79 | - | 44 | |
MIP-1-2 | 0.25 | 5.49 | 2.33 | 0.911 | 23 |
0.5 | 5.18 | 2.20 | 1.230 | 53 | |
MIP-1-4 | 0.25 | 5.81 | 2.47 | 0.963 | 39 |
0.5 | 5.05 | 2.14 | 1.197 | 57 | |
MIP-1-6 | 0.25 | 6.55 | 2.78 | 1.086 | 53 |
0.5 | 5.05 | 2.14 | 1.196 | 57 |
Sorbent | H, cm | Qsorb × 10−2, mmol | qdyn × 10−2, mmol mL−1 | IF | R, % |
---|---|---|---|---|---|
CP-1 | 3.0 | 6.02 | 2.56 | - | 20 |
4.5 | 4.95 | 1.40 | - | 52 | |
MIP-1-2 | 3.0 | 5.52 | 2.35 | 0.916 | 23 |
4.5 | 5.90 | 1.67 | 1.193 | 44 | |
MIP-1-4 | 3.0 | 5.81 | 2.46 | 0.962 | 39 |
4.5 | 6.32 | 1.79 | 1.278 | 52 | |
MIP-1-6 | 3.0 | 6.55 | 2.78 | 1.086 | 53 |
4.5 | 6.94 | 1.96 | 1.402 | 48 |
Sorbent | Cholesterol | Cholic Acid | α | ||
---|---|---|---|---|---|
Qsorb, × 10−2, mmol | qchol × 10−2, mmol·mL−1 | Qsorb, × 10−2, mmol | qChA × 10−2, mmol·mL−1 | ||
CP-1 | 6.02 | 2.56 | 7.07 | 3.00 | 0.85 |
MIP-1-6 | 6.55 | 2.78 | 3.83 | 1.62 | 1.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osipenko, A.; Garkushina, I. The Effect of the Synthesis Method on Physicochemical Properties of Selective Granular Polymer Sorbents. Polymers 2022, 14, 353. https://doi.org/10.3390/polym14020353
Osipenko A, Garkushina I. The Effect of the Synthesis Method on Physicochemical Properties of Selective Granular Polymer Sorbents. Polymers. 2022; 14(2):353. https://doi.org/10.3390/polym14020353
Chicago/Turabian StyleOsipenko, Alexandra, and Irina Garkushina. 2022. "The Effect of the Synthesis Method on Physicochemical Properties of Selective Granular Polymer Sorbents" Polymers 14, no. 2: 353. https://doi.org/10.3390/polym14020353
APA StyleOsipenko, A., & Garkushina, I. (2022). The Effect of the Synthesis Method on Physicochemical Properties of Selective Granular Polymer Sorbents. Polymers, 14(2), 353. https://doi.org/10.3390/polym14020353