Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Nanoparticle Production
2.3. Specimen Production
2.4. Biofilm Development on the Prepared Specimens
2.5. Morphological Analysis of Biofilms by Scanning Electron Microscope (SEM)
2.6. Analysis of Biofilms’ Vitality and Thickness by Confocal Laser Scanning Microscopy (CLSM)
2.7. DNA Isolation and Quantitative Polymerase Chain Reaction (qPCR)
2.8. Data Analysis
3. Results
3.1. Morphological Analysis of Biofilms by Scanning Electron Microscope (SEM)
3.2. Analysis of Biofilms Vitality and Thickness by Confocal Laser Scanning Microscopy (CLSM)
3.3. Bacterial Load and Presence of Specific Bacteria Analysis by DNA Isolation and Quantitative Polymerase Chain Reaction (qPCR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zitzmann, N.U.; Hagmann, E.; Weiger, R. What is the prevalence of various types of prosthetic dental restorations in Europe? Clin. Oral Implant. Res. 2007, 18 (Suppl. 3), 20–33. [Google Scholar] [CrossRef]
- Hanif, A.; Qureshi, S.; Sheikh, Z.; Rashid, H. Complications in implant dentistry. Eur. J. Dent. 2017, 11, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Heitz-Mayfield, L.J.A.; Salvi, G.E. Peri-implant mucositis. J. Periodontol. 2018, 89 (Suppl. 1), S257–S266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.-L. Peri-implantitis. J. Periodontol. 2018, 89 (Suppl. 1), S267–S290. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. 20), S286–S291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derks, J.; Tomasi, C. Peri-implant health and disease. A systematic review of current epidemiology. J. Clin. Periodontol. 2015, 42 (Suppl. 16), S158–S171. [Google Scholar] [CrossRef]
- Salvi, G.E.; Cosgarea, R.; Sculean, A. Prevalence of Periimplant Diseases. Implant. Dent. 2019, 28, 100–102. [Google Scholar] [CrossRef]
- Rodrigo, D.; Sanz-Sánchez, I.; Figuero, E.; Llodrá, J.C.; Bravo, M.; Caffesse, R.G.; Vallcorba, N.; Guerrero, A.; Herrera, D. Prevalence and risk indicators of peri-implant diseases in Spain. J. Clin. Periodontol. 2018, 45, 1510–1520. [Google Scholar] [CrossRef]
- Carcuac, O.; Abrahamsson, I.; Albouy, J.-P.; Linder, E.; Larsson, L.; Berglundh, T. Experimental periodontitis and peri-implantitis in dogs. Clin. Oral Implant. Res. 2013, 24, 363–371. [Google Scholar] [CrossRef]
- Carcuac, O.; Berglundh, T. Composition of human peri-implantitis and periodontitis lesions. J. Dent. Res. 2014, 93, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Zitzmann, N.U.; Berglundh, T.; Marinello, C.P.; Lindhe, J. Experimental peri-implant mucositis in man. J. Clin. Periodontol. 2001, 28, 517–523. [Google Scholar] [CrossRef]
- Salvi, G.E.; Aglietta, M.; Eick, S.; Sculean, A.; Lang, N.P.; Ramseier, C.A. Reversibility of experimental peri-implant mucositis compared with experimental gingivitis in humans. Clin. Oral Implant. Res. 2012, 23, 182–190. [Google Scholar] [CrossRef]
- Figuero, E.; Graziani, F.; Sanz, I.; Herrera, D.; Sanz, M. Management of peri-implant mucositis and peri-implantitis. Periodontol. 2000 2014, 66, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Bhavikatti, S.K.; Bhardwaj, S.; Prabhuji, M.L.V. Current applications of nanotechnology in dentistry: A review. Gen. Dent. 2014, 62, 72–77. [Google Scholar] [PubMed]
- Padovani, G.C.; Feitosa, V.P.; Sauro, S.; Tay, F.R.; Durán, G.; Paula, A.J.; Durán, N. Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects. Trends Biotechnol. 2015, 33, 621–636. [Google Scholar] [CrossRef]
- Ajay v, S.; Krunal K, M. Top-Down Versus Bottom-Up Nanoengineering Routes to Design Advanced Oropharmacological Products. Curr. Pharm. Des. 2016, 22, 1534–1545. [Google Scholar] [CrossRef]
- Bueno, J.; Sánchez, M.C.; Toledano-Osorio, M.; Figuero, E.; Toledano, M.; Medina-Castillo, A.L.; Osorio, R.; Herrera, D.; Sanz, M. Antimicrobial effect of nanostructured membranes for guided tissue regeneration: An in vitro study. Dent. Mater. 2020, 36, 1566–1577. [Google Scholar] [CrossRef]
- Fröber, K.; Bergs, C.; Pich, A.; Conrads, G. Biofunctionalized zinc peroxide nanoparticles inhibit peri-implantitis associated anaerobes and Aggregatibacter actinomycetemcomitans pH-dependent. Anaerobe 2020, 62, 102153. [Google Scholar] [CrossRef] [PubMed]
- Osorio, R.; Alfonso-Rodríguez, C.A.; Medina-Castillo, A.L.; Alaminos, M.; Toledano, M. Bioactive Polymeric Nanoparticles for Periodontal Therapy. PLoS ONE 2016, 11, e0166217. [Google Scholar] [CrossRef]
- Sánchez, M.C.; Toledano-Osorio, M.; Bueno, J.; Figuero, E.; Toledano, M.; Medina-Castillo, A.L.; Osorio, R.; Herrera, D.; Sanz, M. Antibacterial effects of polymeric PolymP-n Active nanoparticles. An in vitro biofilm study. Dent. Mater. 2019, 35, 156–168. [Google Scholar] [CrossRef]
- Toledano-Osorio, M.; Babu, J.P.; Osorio, R.; Medina-Castillo, A.L.; García-Godoy, F.; Toledano, M. Modified Polymeric Nanoparticles Exert In Vitro Antimicrobial Activity Against Oral Bacteria. Materials 2018, 11, 1013. [Google Scholar] [CrossRef] [Green Version]
- Medina-Castillo, A.L. Thermodynamic Principles of Precipitation Polymerization and Role of Fractal Nanostructures in the Particle Size Control. Macromolecules 2020, 53, 5687–5700. [Google Scholar] [CrossRef]
- Medina-Castillo, A.L.; Fernandez-Sanchez, J.F.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Micrometer and Submicrometer Particles Prepared by Precipitation Polymerization: Thermodynamic Model and Experimental Evidence of the Relation between Flory’s Parameter and Particle Size. Macromolecules 2010, 43, 5804–5813. [Google Scholar] [CrossRef]
- Sánchez, M.C.; Llama-Palacios, A.; Blanc, V.; León, R.; Herrera, D.; Sanz, M. Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota. J. Periodontal Res. 2011, 46, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Baylan, S.; Park, B.; Richter, G.; Sitti, M. Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties. PLoS ONE 2017, 12, e0175428. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, M.C.; Llama-Palacios, A.; Fernández, E.; Figuero, E.; Marín, M.J.; León, R.; Blanc, V.; Herrera, D.; Sanz, M. An in vitro biofilm model associated to dental implants: Structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent. Mater. 2014, 30, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Garrett, T.R.; Bhakoo, M.; Zhang, Z. Characterisation of bacterial adhesion and removal in a flow chamber by micromanipulation measurements. Biotechnol. Lett. 2008, 30, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Rizo-Gorrita, M.; Luna-Oliva, I.; Serrera-Figallo, M.-A.; Torres-Lagares, D. Superficial Characteristics of Titanium after Treatment of Chorreated Surface, Passive Acid, and Decontamination with Argon Plasma. J. Funct. Biomater. 2018, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.-K.; Paeng, K.; Jung, U.-W.; Choi, S.-H.; Sanz, M.; Sanz-Martín, I. The effect of five mechanical instrumentation protocols on implant surface topography and roughness: A scanning electron microscope and confocal laser scanning microscope analysis. Clin. Oral Implant. Res. 2019, 30, 578–587. [Google Scholar] [CrossRef]
- Gamal, A.Y.; Kumper, R.M. A novel approach to the use of doxycycline-loaded biodegradable membrane and EDTA root surface etching in chronic periodontitis: A randomized clinical trial. J. Periodontol. 2012, 83, 1086–1094. [Google Scholar] [CrossRef]
- Toledano, M.; Osorio, M.T.; Vallecillo-Rivas, M.; Toledano-Osorio, M.; Rodríguez-Archilla, A.; Toledano, R.; Osorio, R. Efficacy of local antibiotic therapy in the treatment of peri-implantitis: A systematic review and meta-analysis. J. Dent. 2021, 113, 103790. [Google Scholar] [CrossRef] [PubMed]
- Lecio, G.; Ribeiro, F.V.; Pimentel, S.P.; Reis, A.A.; da Silva, R.V.C.; Nociti-Jr, F.; Moura, L.; Duek, E.; Casati, M.; Casarin, R.C.V. Novel 20% doxycycline-loaded PLGA nanospheres as adjunctive therapy in chronic periodontitis in type-2 diabetics: Randomized clinical, immune and microbiological trial. Clin. Oral Investig. 2020, 24, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Moura, L.A.; Ribeiro, F.V.; Aiello, T.B.; Duek, E.A.D.R.; Sallum, E.A.; Nociti Junior, F.H.; Casati, M.Z.; Sallum, A.W. Characterization of the release profile of doxycycline by PLGA microspheres adjunct to non-surgical periodontal therapy. J. Biomater. Sci. Polym. Ed. 2015, 26, 573–584. [Google Scholar] [CrossRef]
- Kulik, E.M.; Thurnheer, T.; Karygianni, L.; Walter, C.; Sculean, A.; Eick, S. Antibiotic Susceptibility Patterns of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis Strains from Different Decades. Antibiotics 2019, 8, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eick, S.; Seltmann, T.; Pfister, W. Efficacy of antibiotics to strains of periodontopathogenic bacteria within a single species biofilm—An in vitro study. J. Clin. Periodontol. 2004, 31, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.; Witsø, I.L.; Jugowiec, D.; Tiainen, H.; Shabestari, M.; Lyngstadaas, S.P.; Lönn-Stensrud, J.; Haugen, H.J. Antibacterial effect of doxycycline-coated dental abutment surfaces. Biomed. Mater. 2015, 10, 055003. [Google Scholar] [CrossRef]
- Souza, J.G.S.; Bertolini, M.M.; Costa, R.C.; Nagay, B.E.; Dongari-Bagtzoglou, A.; Barão, V.A.R. Targeting implant-associated infections: Titanium surface loaded with antimicrobial. iScience 2021, 24, 102008. [Google Scholar] [CrossRef]
- Navarro-Requena, C.; Pérez-Amodio, S.; Castaño, O.; Engel, E. Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts. Nanotechnology 2018, 29, 395102. [Google Scholar] [CrossRef] [Green Version]
- Botelho, M.A.; Martins, J.G.; Ruela, R.S.; Queiroz, D.B.; Ruela, W.S. Nanotechnology in ligature-induced periodontitis: Protective effect of a doxycycline gel with nanoparticules. J. Appl. Oral Sci. Rev. FOB 2010, 18, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Ding, L.; Kasugai, S. Effect of doxycycline doped bone substitute on vertical bone augmentation on rat calvaria. Dent. Mater. J. 2019, 38, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Toledano-Osorio, M.; Manzano-Moreno, F.J.; Toledano, M.; Osorio, R.; Medina-Castillo, A.L.; Costela-Ruiz, V.J.; Ruiz, C. Doxycycline-doped membranes induced osteogenic gene expression on osteoblastic cells. J. Dent. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Toledano-Osorio, M.; Manzano-Moreno, F.J.; Toledano, M.; Medina-Castillo, A.L.; Costela-Ruiz, V.J.; Ruiz, C.; Osorio, R. Doxycycline-Doped Polymeric Membranes Induced Growth, Differentiation and Expression of Antigenic Phenotype Markers of Osteoblasts. Polymers 2021, 13, 1063. [Google Scholar] [CrossRef] [PubMed]
Control | Un-NPs | Ca-NPs | Zn-NPs | Dox-NPs | |
---|---|---|---|---|---|
Viable cell biomass | 68,750.66 (56,340.99) | 96,387.27 (68,263.95) | 89,579.52 (151,360) | 67,989.72 (56,604.86) | 30,954.77 (36,063.15) |
Dead cell biomass | 48,959.41 (45,304.36) | 217,722.52 * (112,422.09) | 214,538.38 * (102,620.69) | 162,149.91 (107,249.13) | 184,033.22 * (74,629.22) |
Viable/dead ratio | 2.16 (3.03) | 0.47 (0.32) | 0.34 (0.45) | 0.41 (0.21) | 0.21 (0.27) * |
% Dead cells | 47.21% | 70.89% | 80.70% | 70.50% | 85.87% |
% Viable cells | 52.79% | 29.11% | 19.30% | 29.50% | 14.13% |
Thickness (μm) | 23 (5.1) | 21 (2.5) | 23 (11.2) | 22 (6.1) | 16 (4.5) |
Bacterial Species | Time of Incubation | Number of Bacteria (CFU/Biofilm, Expressed as Mean (SD)) | ||||
---|---|---|---|---|---|---|
Control | Un-NPs | Ca-NPs | Zn-NPs | Do × -NPs | ||
So | 12 h | 4.36 × 107 | 7.99 × 107 | 8.80 × 107 | 1.05 × 108 | 2.03 × 104 |
(1.12 × 107) | (1.89 × 107) * | (1.94 × 107) * | (3.28 × 107) * | (1.30 × 104) * | ||
24 h | 4.92 × 107 | 1.08 × 108 | 1.09 × 108 | 7.99 × 107 | 7.75 × 105 | |
(3.92 × 107) | (6.78 × 107) | (7.19 × 107) | (4.58 × 107) | (1.19 × 106) * | ||
48 h | 4.02 × 107 | 4.45 × 107 | 5.45 × 107 | 5.19 × 107 | 6.63 × 104 | |
(2.17 × 107) | (4.65 × 107) | (2.34 × 107) | (3.07 × 107) | (6.83 × 104) * | ||
72 h | 7.42 × 107 | 1.33 × 108 | 9.88 × 107 | 1.37 × 108 | 1.97 × 105 | |
(3.19 × 107) | (5.75 × 107) | (3.59 × 107) | (5.35 × 107) * | (2.76 × 105) * | ||
An | 12 h | 3.47 × 105 | 5.11 × 105 | 4.98 × 105 | 4.68 × 105 | 3.72 × 104 |
(2.28 × 105) | (3.62 × 105) | (2.35 × 105) | (2.41 × 105) | (2.17 × 104) * | ||
24 h | 9.68 × 106 | 1.10 × 107 | 1.30 × 107 | 7.21 × 106 | 4.64 × 104 | |
(8.94 × 106) | (1.06 × 107) | (1.49 × 107) | (4.50 × 106) | (9.98 × 103) * | ||
48 h | 4.14 × 106 | 3.90 × 106 | 4.37 × 106 | 4.34 × 106 | 5.10 × 104 | |
(2.47 × 106) | (2.90 × 106) | (3.14 × 106) | (2.92 × 106) | (2.41 × 104) * | ||
72 h | 7.72 × 106 | 8.87 × 106 | 7.74 × 106 | 9.71 × 106 | 5.06 × 104 | |
(4.92 × 106) | (5.90 × 106) | (4.73 × 106) | (3.82 × 106) | (9.75 × 103) * | ||
Vp | 12 h | 3.98 × 106 | 4.67 × 106 | 5.79 × 106 | 1.28 × 107 | 9.72 × 103 |
(5.02 × 106) | (5.14 × 106) | (6.80 × 106) | (2.09 × 107) | (5.71 × 103) * | ||
24 h | 2.71 × 108 | 2.93 × 108 | 3.87 × 108 | 2.87 × 108 | 3.15 × 105 | |
(2.49 × 108) | (2.43 × 108) | (3.30 × 108) | (3.15 × 108) | (4.41 × 105) * | ||
48 h | 3.39 × 108 | 3.03 × 108 | 3.68 × 108 | 3.06 × 108 | 8.82 × 105 | |
(2.88 × 108) | (4.47 × 108) | (2.19 × 108) | (2.59 × 108) | (1.17 × 106) * | ||
72 h | 8.41 × 108 | 9.66 × 108 | 5.55 × 108 | 9.60 × 108 | 6.87 × 105 | |
(6.59 × 108) | 8.82 × 108) | (2.75 × 108) | (6.83 × 108) | (7.52 × 105) * | ||
Fn | 12 h | 2.56 × 106 | 5.93 × 106 | 4.35 × 106 | 8.63 × 106 | 4.95 × 105 |
(1.40 × 106) | (4.98 × 106) | (2.58 × 106) | (7.15 × 106) | (2.71 × 105) * | ||
24 h | 6.41 × 106 | 1.34 × 107 | 1.02 × 107 | 1.23 × 107 | 2.17 × 105 | |
(3.73 × 106) | (1.16 × 107) | (3.18 × 106) | (1.03 × 107) | (1.34 × 105) * | ||
48 h | 2.20 × 107 | 2.45 × 107 | 2.77 × 107 | 2.65 × 107 | 2.81 × 105 | |
(1.85 × 107) | (3.03 × 107) | (1.86 × 107) | (2.33 × 107) | (2.95 × 105)* | ||
72 h | 3.95 × 107 | 4.30 × 107 | 3.19 × 107 | 5.20 × 107 | 2.78 × 105 | |
(3.08 × 107) | (3.32 × 107) | (7.63 × 106) | (3.07 × 107) | (1.23 × 105) * | ||
Aa | 12 h | 1.18 × 107 | 2.39 × 107 | 1.93 × 107 | 2.51 × 107 | 9.16 × 105 |
(1.70 × 107) | (3.41 × 107) | (2.69 × 107) | (3.75 × 107) | (1.32 × 106) | ||
24 h | 2.48 × 106 | 5.42 × 106 | 5.04 × 106 | 5.76 × 106 | 1.25 × 105 | |
(1.78 × 106) | (3.61 × 106) | (3.52 × 106) | (4.63 × 106) | (7.29 × 104)* | ||
48 h | 3.64 × 105 | 5.88 × 105 | 7.16 × 105 | 5.60 × 105 | 1.10 × 105 | |
(2.46 × 105) | (3.87 × 105) | (6.27 × 105) | (3.63 × 105) | (6.76 × 104) * | ||
72 h | 8.70 × 106 | 8.84 × 106 | 3.97 × 106 | 5.67 × 106 | 9.82 × 104 | |
(1.10 × 107) | (1.70 × 107) | (3.42 × 106) | (4.60 × 106) | (3.88 × 104) * | ||
Pg | 12 h | 5.60 × 105 | 1.26 × 106 | 1.17 × 106 | 1.52 × 106 | 3.30 × 105 |
(4.07 × 105) | (4.74 × 105) * | (6.64 × 105) | (5.10 × 105) * | (1.49 × 105) | ||
24 h | 8.22 × 105 | 2.13 × 106 | 2.21 × 106 | 2.10 × 106 | 2.47 × 105 | |
(9.92 × 105) | (1.84 × 106) | (2.17 × 106) | (2.05 × 106) | (2.19 × 105) | ||
48 h | 1.81 × 106 | 2.32 × 106 | 2.65 × 106 | 2.92 × 106 | 2.71 × 105 | |
(2.42 × 106) | (3.18 × 106) | (4.17 × 106) | (5.33 × 106) | (2.77 × 105) | ||
72 h | 2.18 × 107 | 5.30 × 107 | 5.11 × 107 | 9.03 × 107 | 5.75 × 105 | |
(2.78 × 107) | (7.75 × 107) | (7.48 × 107) | (1.34 × 108) | (8.43 × 105) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno, J.; Virto, L.; Toledano-Osorio, M.; Figuero, E.; Toledano, M.; Medina-Castillo, A.L.; Osorio, R.; Sanz, M.; Herrera, D. Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model. Polymers 2022, 14, 358. https://doi.org/10.3390/polym14030358
Bueno J, Virto L, Toledano-Osorio M, Figuero E, Toledano M, Medina-Castillo AL, Osorio R, Sanz M, Herrera D. Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model. Polymers. 2022; 14(3):358. https://doi.org/10.3390/polym14030358
Chicago/Turabian StyleBueno, Jaime, Leire Virto, Manuel Toledano-Osorio, Elena Figuero, Manuel Toledano, Antonio L. Medina-Castillo, Raquel Osorio, Mariano Sanz, and David Herrera. 2022. "Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model" Polymers 14, no. 3: 358. https://doi.org/10.3390/polym14030358
APA StyleBueno, J., Virto, L., Toledano-Osorio, M., Figuero, E., Toledano, M., Medina-Castillo, A. L., Osorio, R., Sanz, M., & Herrera, D. (2022). Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model. Polymers, 14(3), 358. https://doi.org/10.3390/polym14030358