Double-Layered Films Based on Furcellaran, Chitosan, and Gelatin Hydrolysates Enriched with AgNPs in Yerba Mate Extract, Montmorillonite, and Curcumin with Rosemary Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Curcumin Extract with Rosemary Essential Oil
2.3. Preparation of MMT Solution
2.4. Preparation of Plant Extracts
2.5. Synthesis of Silver Nanoparticles (AgNPs)
2.6. Particle Size and Zeta Potential
2.7. Double-Layered Film Preparation
2.8. UV-Vis Spectroscopy Analysis
2.9. Atomic Force Microscopy (AFM)
2.10. Scanning Electron Microscopy (SEM)
2.11. Color Parameter
2.12. Thickness
2.13. Water Content and Solubility
2.14. Water Vapor Transmission Rate (WVTR)
2.15. Contact Angle Determination
2.16. Thermal Properties
2.17. Mechanical Properties
2.18. Antioxidant Activity
2.19. Antimicrobial Activity
2.20. pH-Responsive Color Changes
2.21. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of AgNPs in Yerba Extract
3.2. Preparation and Characterization of Active Double-Layered Films
3.3. Structural Characterization of Active Double-Layered Films
3.4. Color Parameters of Active Double-Layered Films
3.5. Water Content, Solubility, WVTR, and WCA of Active Double-Layered Films
3.6. Thermal Properties of Active Double-Layered Films
3.7. Mechanical Properties of Active Double-Layered Films
3.8. Antioxidant Activity
3.9. Antimicrobial Activity
3.10. pH-Responsive Color Change
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marangoni, L.; Vieira, R.P.; Jamróz, E.; Anjos, C.A.R. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr. Polym. 2021, 252, 117221. [Google Scholar] [CrossRef]
- Barbosa, M.H.R.; Gonçalves, S.d.Á.; Marangoni Júnior, L.; Alves, R.M.V.; Vieira, R.P. Physicochemical properties of chitosan-based films incorporated with limonene. J. Food Meas. Charact. 2022, 16, 2011–2023. [Google Scholar] [CrossRef]
- Tyuftin, A.A.; Kerry, J.P. Gelatin films: Study review of barrier properties and implications for future studies employing biopolymer films. Food Packag. Shelf Life 2021, 29, 100688. [Google Scholar] [CrossRef]
- Laos, K.; Ring, S.G. Note: Characterisation of furcellaran samples from Estonian Furcellaria lumbricalis (Rhodophyta). J. Appl. Phycol. 2005, 17, 461–464. [Google Scholar] [CrossRef]
- Jamróz, E.; Khachatryan, G.; Kopel, P.; Juszczak, L.; Kawecka, A.; Krzyściak, P.; Kucharek, M.; Bębenek, Z.; Zimowska, M. Furcellaran nanocomposite films: The effect of nanofillers on the structural, thermal, mechanical and antimicrobial properties of biopolymer films. Carbohydr. Polym. 2020, 240, 116244. [Google Scholar] [CrossRef]
- Jamróz, E.; Tkaczewska, J.; Juszczak, L.; Zimowska, M.; Kawecka, A.; Krzyściak, P.; Skóra, M. The influence of lingonberry extract on the properties of novel, double-layered biopolymer films based on furcellaran, CMC and a gelatin hydrolysate. Food Hydrocoll. 2021, 124, 107334. [Google Scholar] [CrossRef]
- Rodrigues, P.R.; Junior, L.M.; de Souza, W.F.C.; Sato, H.H.; Alves, R.M.V.; Vieira, R.P. O-ATRP synthesized poly(β-pinene) blended with chitosan for antimicrobial and antioxidant bio-based films production. Int. J. Biol. Macromol. 2021, 193, 425–432. [Google Scholar] [CrossRef]
- Thi Nguyen, T.; Pham, B.-T.T.; Nhien Le, H.; Bach, L.G.; Thuc, C.N.H. Comparative characterization and release study of edible films of chitosan and natural extracts. Food Packag. Shelf Life 2022, 32, 100830. [Google Scholar] [CrossRef]
- Luna, R.; Touhami, F.; Uddin, M.J.; Touhami, A. Effect of temperature and pH on nanostructural and nanomechanical properties of chitosan films. Surf. Interfaces 2022, 29, 101706. [Google Scholar] [CrossRef]
- Tkaczewska, J. Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings-A review. Trends Food Sci. Technol. 2020, 106, 298–311. [Google Scholar] [CrossRef]
- Yadav, S.; Mehrotra, G.K.; Bhartiya, P.; Singh, A.; Dutta, P.K. Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr. Polym. 2020, 227, 115348. [Google Scholar] [CrossRef]
- Park, J.; Nam, J.; Yun, H.; Jin, H.-J.; Kwak, H.W. Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties. Carbohydr. Polym. 2021, 254, 117317. [Google Scholar] [CrossRef]
- Pinto, L.; Bonifacio, M.A.; De Giglio, E.; Santovito, E.; Cometa, S.; Bevilacqua, A.; Baruzzi, F. Biopolymer hybrid materials: Development, characterization, and food packaging applications. Food Packag. Shelf Life 2021, 28, 100676. [Google Scholar] [CrossRef]
- Jamróz, E.; Kulawik, P.; Tkaczewska, J.; Guzik, P.; Zając, M.; Juszczak, L.; Krzyściak, P.; Turek, K. The effects of active double-layered furcellaran/gelatin hydrolysate film system with Ala-Tyr peptide on fresh Atlantic mackerel stored at −18 °C. Food Chem. 2021, 338, 127867. [Google Scholar] [CrossRef]
- Fabra, M.J.; López-Rubio, A.; Lagaron, J.M. Three-Layer Films Based on Wheat Gluten and Electrospun PHA. Food Bioprocess Technol. 2015, 8, 2330–2340. [Google Scholar] [CrossRef]
- Medeiros, B.G.d.S.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Carneiro-da-Cunha, M.G. Polysaccharide/Protein Nanomultilayer Coatings: Construction, Characterization and Evaluation of Their Effect on ‘Rocha’ Pear (Pyrus communis L.) Shelf-Life. Food Bioprocess Technol. 2012, 5, 2435–2445. [Google Scholar] [CrossRef] [Green Version]
- Choi, A.-J.; Kim, C.-J.; Cho, Y.-J.; Hwang, J.-K.; Kim, C.-T. Characterization of Capsaicin-Loaded Nanoemulsions Stabilized with Alginate and Chitosan by Self-assembly. Food Bioprocess Technol. 2011, 4, 1119–1126. [Google Scholar] [CrossRef] [Green Version]
- Luciano, C.G.; Rodrigues, M.M.; Lourenço, R.V.; Bittante, A.M.Q.B.; Fernandes, A.M.; do Amaral Sobral, P.J. Bi-layer Gelatin Film: Activating Film by Incorporation of “Pitanga” Leaf Hydroethanolic Extract and/or Nisin in the Second Layer. Food Bioprocess Technol. 2021, 14, 106–119. [Google Scholar] [CrossRef]
- Cruces, F.; García, M.G.; Ochoa, N.A. Reduction of Water Vapor Permeability in Food Multilayer Biopackaging by Epitaxial Crystallization of Beeswax. Food Bioprocess Technol. 2021, 14, 1244–1255. [Google Scholar] [CrossRef]
- Jamróz, E.; Janik, M.; Juszczak, L.; Kruk, T.; Kulawik, P.; Szuwarzyński, M.; Kawecka, A.; Khachatryan, K. Composite Biopolymer Films Based on a Polyelectrolyte Complex of Furcellaran and Chitosan. Carbohydr. Polym. 2021, 274, 118627. [Google Scholar] [CrossRef]
- Janik, M.; Jamróz, E.; Tkaczewska, J.; Juszczak, L.; Kulawik, P.; Szuwarzyński, M.; Khachatryan, K.; Kopel, P. Utilisation of Carp Skin Post-Production Waste in Binary Films Based on Furcellaran and Chitosan to Obtain Packaging Materials for Storing Blueberries. Materials 2021, 14, 7848. [Google Scholar] [CrossRef]
- Yan, W.; Chen, W.; Muhammad, U.; Zhang, J.; Zhuang, H.; Zhou, G. Preparation of α-tocopherol-chitosan nanoparticles/chitosan/montmorillonite film and the antioxidant efficiency on sliced dry-cured ham. Food Control 2019, 104, 132–138. [Google Scholar] [CrossRef]
- Bello, B.A.; Khan, S.A.; Khan, J.A.; Syed, F.Q.; Anwar, Y.; Khan, S.B. Antiproliferation and antibacterial effect of biosynthesized AgNps from leaves extract of Guiera senegalensis and its catalytic reduction on some persistent organic pollutants. J. Photochem. Photobiol. B Biol. 2017, 175, 99–108. [Google Scholar] [CrossRef]
- Shirzadi-Ahodashti, M.; Mizwari, Z.M.; Hashemi, Z.; Rajabalipour, S.; Ghoreishi, S.M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M.A. Discovery of high antibacterial and catalytic activities of biosynthesized silver nanoparticles using C. fruticosus (CF-AgNPs) against multi-drug resistant clinical strains and hazardous pollutants. Environ. Technol. Innov. 2021, 23, 101607. [Google Scholar] [CrossRef]
- Wu, Z.; Tang, S.; Deng, W.; Luo, J.; Wang, X. Antibacterial chitosan composite films with food-inspired carbon spheres immobilized AgNPs. Food Chem. 2021, 363, 130342. [Google Scholar] [CrossRef] [PubMed]
- Pluta-Kubica, A.; Jamróz, E.; Kawecka, A.; Juszczak, L.; Krzyściak, P. Active edible furcellaran/whey protein films with yerba mate and white tea extracts: Preparation, characterization and its application to fresh soft rennet-curd cheese. Int. J. Biol. Macromol. 2019, 155, 1307–1316. [Google Scholar] [CrossRef]
- Oliveira Filho, J.G.d.; Bertolo, M.R.V.; Rodrigues, M.Á.V.; Marangon, C.A.; Silva, G.d.C.; Odoni, F.C.A.; Egea, M.B. Curcumin: A multifunctional molecule for the development of smart and active biodegradable polymer-based films. Trends Food Sci. Technol. 2021, 118, 840–849. [Google Scholar] [CrossRef]
- Di Giuseppe, F.A.; Volpe, S.; Cavella, S.; Masi, P.; Torrieri, E. Physical properties of active biopolymer films based on chitosan, sodium caseinate, and rosemary essential oil. Food Packag. Shelf Life 2022, 32, 100817. [Google Scholar] [CrossRef]
- Yeddes, W.; Djebali, K.; Aidi Wannes, W.; Horchani-Naifer, K.; Hammami, M.; Younes, I.; Saidani Tounsi, M. Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using mixture design and response surface methodology. Int. J. Biol. Macromol. 2020, 154, 92–103. [Google Scholar] [CrossRef]
- Jamróz, E.; Cabaj, A.; Juszczak, L.; Tkaczewska, J.; Zimowska, M.; Cholewa-Wójcik, A.; Krzyściak, P.; Kopel, P. Active Double-Layered Films Enriched with AgNPs in Great Water Dock Root and Pu-Erh Extracts. Materials 2021, 14, 6925. [Google Scholar] [CrossRef]
- Kavoosi, G.; Rahmatollahi, A.; Mohammad Mahdi Dadfar, S.; Mohammadi Purfard, A. Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT Food Sci. Technol. 2014, 57, 556–561. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Fernando, A.L.; Pires, J.R.A.; Rodrigues, P.F.; Lopes, A.A.S.; Fernandes, F.M.B. Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crops Prod. 2017, 107, 565–572. [Google Scholar] [CrossRef]
- Ezati, P.; Rhim, J.-W. pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydr. Polym. 2020, 230, 115638. [Google Scholar] [CrossRef] [PubMed]
- Arreche, R.A.; Montes de Oca-Vásquez, G.; Vega-Baudrit, J.R.; Vázquez, P.G. Synthesis of Silver Nanoparticles Using Extracts from Yerba Mate (Ilex paraguariensis) Wastes. Waste Biomass Valorization 2020, 11, 245–253. [Google Scholar] [CrossRef]
- Paramasivam, M.; Poi, R.; Banerjee, H.; Bandyopadhyay, A. High-performance thin layer chromatographic method for quantitative determination of curcuminoids in Curcuma longa germplasm. Food Chem. 2009, 113, 640–644. [Google Scholar] [CrossRef]
- Shankar, S.; Tanomrod, N.; Rawdkuen, S.; Rhim, J.-W. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int. J. Biol. Macromol. 2016, 92, 842–849. [Google Scholar] [CrossRef]
- Jakubowska, E.; Gierszewska, M.; Nowaczyk, J.; Olewnik-Kruszkowska, E. Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocoll. 2020, 108, 106007. [Google Scholar] [CrossRef]
- Ni, Y.; Nie, H.; Wang, J.; Lin, J.; Wang, Q.; Sun, J.; Zhang, W.; Wang, J. Enhanced functional properties of chitosan films incorporated with curcumin-loaded hollow graphitic carbon nitride nanoparticles for bananas preservation. Food Chem. 2022, 366, 130539. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, H.; Zhou, X.; Wang, D.; Zhong, Y.; Xia, Q.; Deng, Y.; Zhao, Y. Antimicrobial, antioxidant and physical properties of chitosan film containing Akebia trifoliata (Thunb.) Koidz. peel extract/montmorillonite and its application. Food Chem. 2021, 361, 130111. [Google Scholar] [CrossRef]
- Duan, A.; Yang, J.; Wu, L.; Wang, T.; Liu, Q.; Liu, Y. Preparation, physicochemical and application evaluation of raspberry anthocyanin and curcumin based on chitosan/starch/gelatin film. Int. J. Biol. Macromol. 2022, 220, 147–158. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Lourenço, R.V.; Bittante, A.M.Q.B.; Moraes, I.C.F.; Sobral, P.J.d.A. Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag. Shelf Life 2016, 10, 87–96. [Google Scholar] [CrossRef]
- Vogler, E.A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 1998, 74, 69–117. [Google Scholar] [CrossRef]
- Dairi, N.; Ferfera-Harrar, H.; Ramos, M.; Garrigós, M.C. Cellulose acetate/AgNPs-organoclay and/or thymol nano-biocomposite films with combined antimicrobial/antioxidant properties for active food packaging use. Int. J. Biol. Macromol. 2019, 121, 508–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostami, H.; Esfahani, A.A. Development a smart edible nanocomposite based on mucilage of Melissa officinalis seed/montmorillonite (MMT)/curcumin. Int. J. Biol. Macromol. 2019, 141, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Ak, T.; Gülçin, İ. Antioxidant and radical scavenging properties of curcumin. Chem.-Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef]
- Kazazić, S.P.; Butković, V.; Srzić, D.; Klasinc, L. Gas-Phase Ligation of Fe+ and Cu+ Ions with Some Flavonoids. J. Agric. Food Chem. 2006, 54, 8391–8396. [Google Scholar] [CrossRef]
- Jovanovic, S.V.; Steenken, S.; Boone, C.W.; Simic, M.G. H-Atom Transfer Is A Preferred Antioxidant Mechanism of Curcumin. J. Am. Chem. Soc. 1999, 121, 9677–9681. [Google Scholar] [CrossRef]
- Jamróz, E.; Cabaj, A.; Tkaczewska, J.; Kawecka, A.; Krzyściak, P.; Szuwarzyński, M.; Mazur, T.; Juszczak, L. Incorporation of Curcumin Extract with Lemongrass Essential Oil into the Middle Layer of Triple-Layered Films Based on Furcellaran/Chitosan/Gelatin Hydrolysates—In Vitro and In Vivo Studies on Active and Intelligent Properties. Food Chem. 2022, 402, 134476, in press. [Google Scholar] [CrossRef]
Parameter | FUR/CHIT+HGEL | Composite No. 1 | Composite No. 2 | Composite No. 3 |
---|---|---|---|---|
L* | 85.62 d ± 0.73 | 78.12 c ± 0.58 | 74.49 b ± 0.32 | 73.39 a ± 0.23 |
a* | −0.82 a ± 0.16 | 3.90 b ± 0.27 | 8.59 c ± 0.43 | 9.16 d ± 0.37 |
b* | 29.11 a ± 2.35 | 76.28 b ± 0.49 | 80.20 c ± 0.64 | 79.37 c ± 0.41 |
ΔE | - | 48.00 | 53.13 | 52.68 |
Appearance |
Properties * | FUR/CHIT+HGEL | Composite No. 1 | Composite No. 2 | Composite No. 3 |
---|---|---|---|---|
Thickness (mm) | 0.088 a ± 0.004 | 0.110 b ± 0.006 | 0.120 c ± 0.006 | 0.132 d ± 0.007 |
Water content (%) | 22.42 b ± 3.08 | 18.94 a ± 1.79 | 16.64 a ± 1.50 | 18.54 a ± 0.42 |
Solubility (%) | 67.74 a ± 1.25 | 61.07 a ± 1.53 | 59.41 a ± 9.35 | 62.99 a ± 3.79 |
WVTR (g m−2 d−1) | 739.77 b ± 10.65 | 724.05 a ± 3.73 | 741.01 b ± 10.81 | 735.37 ab ± 4.50 |
WCA | CHIT+HGEL | CHIT+HGEL | CHIT+HGEL | CHIT+HGEL |
92.14 c ± 1.43 | 79.30 a ± 1.34 | 80.29 ab ± 1.96 | 80.95 b ± 0.70 | |
FUR | FUR+MMT+AgNPs+CUR | FUR+MMT+AgNPs+CUR | FUR+MMT+AgNPs+CUR | |
90.08 b ± 0.48 | 24.40 a ± 1.40 | 25.38 a ± 1.17 | 24.48 a ± 1.23 |
Properties * | FUR/CHIT+HGEL | Composite No. 1 | Composite No. 2 | Composite No. 3 |
---|---|---|---|---|
Tm (°C) | 160.7 b ± 6.3 | 156.9 ab ± 2.8 | 151.1 a ± 3.9 | 164.1 b ± 1.3 |
ΔH (J/g) | 221.43 bc ± 3.09 | 228.57 c ± 15.24 | 201.10 b ± 14.36 | 109.27 a ± 15.62 |
Max breaking load (N) | 14.75 b ± 1.04 | 6.68 a ± 1.42 | 6.51 a ± 1.23 | 5.37 a ± 0.98 |
Tensile strength (kN/m) | 0.97 b ± 0.07 | 0.45 a ± 0.09 | 0.43 a ± 0.08 | 0.36 a ± 0.07 |
Elongation at break (%) | 16.24 a ± 1.83 | 17.70 a ± 3.26 | 21.10 b ± 4.05 | 15.45 a ± 0.98 |
Modulus of elasticity (MPa) | 209.90 b ± 27.49 | 63.59 a ± 14.10 | 77.55 a ± 12.06 | 57.04 a ± 13.58 |
Microbial Strain | Sample | |||
---|---|---|---|---|
FUR/CHIT+HGEL | Composite No.1 | Composite No.2 | Composite No.3 | |
Staphylococcus aureus ATCC 29213 | no antimicrobial effect | moderate antimicrobial effect and bacterial growth only on the film border | good antimicrobial effect | no antimicrobial effect alteration of film and bacterial growth |
Enterococcus faecalis ATCC 29212 | no antimicrobial effect | moderate antimicrobial effect and bacterial growth only on the film border | good antimicrobial effect—no bacterial growth and a narrow inhibition zone | no antimicrobial effect alteration of film and bacterial growth |
Escherichia coli ATCC 25922 | no antimicrobial effect | partial effect—no microbial growth in the center of the sample | moderate antimicrobial effect—few colonies grew over the sample | no antimicrobial effect |
Salmonella enterica ATCC BAA664 | no antimicrobial effect | no antimicrobial effect | moderate antimicrobial effect—few colonies grew over the sample | no antimicrobial effect |
Pseudomonas aeruginosa ATCC 9027 | no antimicrobial effect | no antimicrobial effect | some antimicrobial effect—lower bacterial growth at the center of the film | no antimicrobial effect; alteration of growth and film |
Candida krusei ATCC 6258 | no antimicrobial effect | no antimicrobial effect | no antimicrobial effect | no antimicrobial effect |
Candida albicans ATCC 90028 | no antimicrobial effect | no antimicrobial effect | no antimicrobial effect | no antimicrobial effect |
Aspergillus niger ATCC 16404 | no antimicrobial effect | no antimicrobial effect | no antimicrobial effect | no antimicrobial effect |
Aspergillus flavus ATCC 204304 | no antimicrobial effect | no antimicrobial effect | no antimicrobial effect | no antimicrobial effect |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamróz, E.; Janik, M.; Marangoni, L., Jr.; Vieira, R.P.; Tkaczewska, J.; Kawecka, A.; Szuwarzyński, M.; Mazur, T.; Jasińska, J.M.; Krzyściak, P.; et al. Double-Layered Films Based on Furcellaran, Chitosan, and Gelatin Hydrolysates Enriched with AgNPs in Yerba Mate Extract, Montmorillonite, and Curcumin with Rosemary Essential Oil. Polymers 2022, 14, 4283. https://doi.org/10.3390/polym14204283
Jamróz E, Janik M, Marangoni L Jr., Vieira RP, Tkaczewska J, Kawecka A, Szuwarzyński M, Mazur T, Jasińska JM, Krzyściak P, et al. Double-Layered Films Based on Furcellaran, Chitosan, and Gelatin Hydrolysates Enriched with AgNPs in Yerba Mate Extract, Montmorillonite, and Curcumin with Rosemary Essential Oil. Polymers. 2022; 14(20):4283. https://doi.org/10.3390/polym14204283
Chicago/Turabian StyleJamróz, Ewelina, Magdalena Janik, Luís Marangoni, Jr., Roniérik Pioli Vieira, Joanna Tkaczewska, Agnieszka Kawecka, Michał Szuwarzyński, Tomasz Mazur, Joanna Maria Jasińska, Paweł Krzyściak, and et al. 2022. "Double-Layered Films Based on Furcellaran, Chitosan, and Gelatin Hydrolysates Enriched with AgNPs in Yerba Mate Extract, Montmorillonite, and Curcumin with Rosemary Essential Oil" Polymers 14, no. 20: 4283. https://doi.org/10.3390/polym14204283
APA StyleJamróz, E., Janik, M., Marangoni, L., Jr., Vieira, R. P., Tkaczewska, J., Kawecka, A., Szuwarzyński, M., Mazur, T., Jasińska, J. M., Krzyściak, P., & Juszczak, L. (2022). Double-Layered Films Based on Furcellaran, Chitosan, and Gelatin Hydrolysates Enriched with AgNPs in Yerba Mate Extract, Montmorillonite, and Curcumin with Rosemary Essential Oil. Polymers, 14(20), 4283. https://doi.org/10.3390/polym14204283