Value Coefficient of Polyethylene Fiber Soil Embankment Slope Based on Response Surface Analysis
Abstract
:1. Introduction
2. Direct Shear Test
2.1. Materials and Sample Preparation
2.2. Test Procedure
2.3. Test Results
3. Finite Element Analysis
3.1. Computational Model
3.2. Stability Analysis
4. Response Surface Analysis
4.1. Theory and Method
4.1.1. Response Surface Method
4.1.2. Value Engineering Method
4.2. Response Surface Test Result
4.3. Statistical Analysis
5. Conclusions
- (1)
- Compared with plain soil, the internal friction angle of fiber-reinforced soil showed no obvious change, but the cohesion was significantly enhanced. When analyzing the slope with ANSYS, the stability of the fiber-reinforced soil embankment slope showed a significant improvement.
- (2)
- The results of the ANOVA indicated that the fiber diameter had the most significant effect on the value coefficient; the response surface illustrated the interaction between the three influencing factors, and the interaction between the fiber diameter and filling height is the most significant.
- (3)
- The cost-effectiveness of the fiber soil slope was obtained by studying the strength reduction coefficient and value engineering method, and a regression polynomial with significant fitting effect was obtained to provide a reference for the actual project.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Winterkorn, H.F.; Pamukcu, S. Soil Stabilization and Grouting; Springer: Boston, MA, USA, 1991; pp. 317–378. [Google Scholar]
- Chen, C.; Wei, K.; Gu, J.; Huang, X.; Dai, X.; Liu, Q. Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil. Polymers 2022, 14, 787. [Google Scholar] [CrossRef]
- Han, C.; He, Y.; Tian, J.; Zhang, J.; Li, J.; Wang, S. Shear strength of polypropylene fibre reinforced clay. Road Mater. Pavement Des. 2020, 22, 2783–2800. [Google Scholar] [CrossRef]
- Sharma, V.; Vinayak, H.K.; Marwaha, B.M. Enhancing compressive strength of soil using natural fibers. Constr. Build. Mater. 2015, 93, 943–949. [Google Scholar] [CrossRef]
- Ibrahim, M.; Dufresne, A.; El-Zawawy, W.K.; Agblevor, F.A. Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydr. Polym. 2010, 81, 811–819. [Google Scholar] [CrossRef]
- Babu, G.L.S.; Vasudevan, A.K. Strength and Stiffness Response of Coir Fiber-Reinforced Tropical Soil. J. Mater. Civ. Eng. 2008, 20, 571–577. [Google Scholar] [CrossRef]
- Babu, G.L.S.; Vasudevan, A.K. Seepage Velocity and Piping Resistance of Coir Fiber Mixed Soils. J. Irrig. Drain. Eng. 2008, 134, 485–492. [Google Scholar] [CrossRef]
- Güllü, H.; Khudir, A. Effect of freeze–thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fibre, steel fibre and lime. Cold Reg. Sci. Technol. 2014, 106–107, 55–65. [Google Scholar] [CrossRef]
- Yixian, W.; Panpan, G.; Shengbiao, S.; Haiping, Y.; Binxiang, Y. Study on Strength Influence Mechanism of Fiber-Reinforced Expansive Soil Using Jute. Geotech. Geol. Eng. 2016, 34, 1079–1088. [Google Scholar] [CrossRef]
- Ahmad, F.; Bateni, F.; Azmi, M. Performance evaluation of silty sand reinforced with fibres. Geotext. Geomembr. 2010, 28, 93–99. [Google Scholar] [CrossRef]
- Wu, Y.K.; Li, Y.B.; Niu, B. Investigation of mechanical properties of randomly distributed sisal fibre reinforced soil. Mater. Res. Innov. 2014, 18 (Suppl. S2), 953–959. [Google Scholar] [CrossRef]
- Yong, L.L.; Emmanuel, E. Effects of Corn Starch and Corn Silk Binary Blends on the Strength Properties of A Soft Clay: A Preliminary Study. J. Nat. Fibers 2021, 39, 1–15. [Google Scholar] [CrossRef]
- Yarbasi, N. Effect of Freezing-Thawing on Clayey Soils Reinforced with Human Hair Fibers. J. Nat. Fibers 2019, 17, 921–931. [Google Scholar] [CrossRef]
- Yarbasi, N. Effect of Freeze-Thaw on Compressive Strength of Clayey Soils Reinforced with Wool. J. Nat. Fibers 2021, 19, 382–393. [Google Scholar] [CrossRef]
- Gowthaman, S.; Nakashima, K.; Kawasaki, S. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions. Materials 2018, 11, 553. [Google Scholar] [CrossRef] [Green Version]
- Kutanaei, S.S.; Choobbasti, A.J. Triaxial behavior of fiber-reinforced cemented sand. J. Adhes. Sci. Technol. 2015, 30, 579–593. [Google Scholar] [CrossRef]
- Diambra, A.; Ibraim, E.; Wood, D.M.; Russell, A. Fibre reinforced sands: Experiments and modelling. Geotext. Geomembr. 2010, 28, 238–250. [Google Scholar] [CrossRef]
- Gong, Y.; He, Y.; Han, C.; Shen, Y.; Tan, G. Stability Analysis of Soil Embankment Slope Reinforced with Polypropylene Fiber under Freeze-Thaw Cycles. Adv. Mater. Sci. Eng. 2019, 2019, 5725708. [Google Scholar] [CrossRef] [Green Version]
- Bouteben, Y.M.; Zeineddine, B. Mechanical behaviour of sandy soils embankments treated with cement and reinforced with discrete elements (fibres). Frattura ed Integrità Strutturale 2022, 16, 174–186. [Google Scholar] [CrossRef]
- Li, Y.; Su, L.; Ling, X.; Wang, J.; Yang, Y. Model Studies on Load-Settlement Characteristics of Coarse-Grained Soil Treated with Geofiber and Cement. Polymers 2018, 10, 621. [Google Scholar] [CrossRef]
- Akbulut, S.; Arasan, S.; Kalkan, E. Modification of clayey soils using scrap tire rubber and synthetic fibers. Appl. Clay Sci. 2007, 38, 23–32. [Google Scholar] [CrossRef]
- Consoli, N.C.; Montardo, J.P.; Prietto, P.D.M.; Pasa, G.S. Engineering Behavior of a Sand Reinforced with Plastic Waste. J. Geotech. Geoenviron. Eng. 2002, 128, 462–472. [Google Scholar] [CrossRef]
- Al-Adili, A.; Azzam, R.; Spagnoli, G.; Schrader, J. Strength of soil reinforced with fiber materials (Papyrus). Soil Mech. Found. Eng. 2012, 48, 241–247. [Google Scholar] [CrossRef]
- Cavey, J.K.; Krizek, R.J.; Sobhan, K.; Baker, W.H. Waste fibers in cement-stabilized recycled aggregate base course material. Transp. Res. Rec. 1995, 1468, 97–107. [Google Scholar]
- Wang, W.; Cao, G.; Li, Y.; Zhou, Y.; Lu, T.; Zheng, B.; Geng, W. Effects of Freeze–Thaw Cycles on Strength and Wave Velocity of Lime-Stabilized Basalt Fiber-Reinforced Loess. Polymers 2022, 14, 1465. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Transport of the People’s Republic of China. Test Methods of Soils for Highway Engineering; Ministry of Transport of the People’s Republic of China: Beijing, China, 2017. (In Chinese)
- Tang, C.-S.; Shi, B.; Zhao, L.-Z. Interfacial shear strength of fiber reinforced soil. Geotext. Geomembr. 2010, 28, 54–62. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. Technical Standard of Highway Engineering; Ministry of Transport of the People’s Republic of China: Beijing, China, 2014. (In Chinese)
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method, 4th ed.; McGraw-Hill: New York, NY, USA; pp. 319–355.
- Box, G.E.P.; Wilson, G. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Society. Ser. B Methodol. 1951, 13, 1–45. [Google Scholar] [CrossRef]
- Fan, W.L.; Zhang, C.T.; Li, Z.L.; Feng, H. An adaptive response surface method with cross terms. Eng. Mech. 2013, 30, 68–72. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Singh, A.K.; Sinha, S. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard. Mater. 2011, 186, 1462–1473. [Google Scholar] [CrossRef]
- GB/T 8223-1987; Value Engineering-General Terms and Work Program. Standards Press of China: Beijing, China, 1988. (In Chinese)
- Guo, L.; Guo, Y.; Zhong, L. Research on the back analysis and failure mechanism of recycled concrete aggregate meso-parameters based on Box-Behnken Design response surface model. J. Build. Eng. 2022, 51, 104317. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Demirel, S.; Vanderbei, R.J. Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard. Mater. 2009, 171, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Scrivener, K.L.; Crumbie, A.K.; Laugesen, P. The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete. Interface Sci. 2004, 12, 411–421. [Google Scholar] [CrossRef]
Properties | Specific Gravity | Maximum Dry Density (g/cm3) | Optimum Water Content (%) | Liquid Limit (%) | Plastic Limit (%) | Plasticity Index (%) |
---|---|---|---|---|---|---|
Value | 2.42 | 1.725 | 12.2 | 34.3 | 25.0 | 9.5 |
Fiber Diameter | 0.02 mm | 0.12 mm | 0.2 mm | Plain Soil |
---|---|---|---|---|
Cohesion (Pa) | 47,540 | 62,272 | 60,291 | 40,747 |
Internal Friction Angle (°) | 21.186 | 21.653 | 22.568 | 22.053 |
Coding Levels | Filling Height (h)/m | Fiber Diameter (d)/mm | Slope Angle (s)/° |
---|---|---|---|
−1 | 0 | 0.02 | 30 |
0 | 15 | 0.12 | 45 |
1 | 30 | 0.20 | 60 |
Run Number | Influencing Factors | Response Values | ||
---|---|---|---|---|
A: h (m) | B: s (°) | C: d (mm) | Value Coefficient | |
1 | 0.00 | 60.00 | 0.02 | 7.7381 |
2 | 0.00 | 60.00 | 0.12 | 7.7381 |
3 | 0.00 | 30.00 | 0.12 | 7.19697 |
4 | 0.00 | 45.00 | 0.20 | 7.07071 |
5 | 15.00 | 60.00 | 0.02 | 6.92226 |
6 | 15.00 | 30.00 | 0.02 | 7.3776 |
7 | 15.00 | 45.00 | 0.12 | 7.86218 |
8 | 15.00 | 60.00 | 0.20 | 8.4317 |
9 | 15.00 | 30.00 | 0.20 | 7.8264 |
10 | 30.00 | 45.00 | 0.02 | 7.15488 |
11 | 30.00 | 30.00 | 0.12 | 7.24638 |
12 | 30.00 | 60.00 | 0.12 | 7.76398 |
13 | 30.00 | 45.00 | 0.20 | 7.80533 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 2.38 | 10 | 0.24 | 18.37 | 0.0010 |
A-h | 0.17 | 1 | 0.17 | 13.39 | 0.0106 |
B-s | 9.92 × 10−3 | 1 | 9.92 × 10−3 | 0.77 | 0.4153 |
C-d | 0.19 | 1 | 0.19 | 14.90 | 0.0084 |
AB | 1.09 × 10−4 | 1 | 1.09 × 10−4 | 8.42 × 10−3 | 0.9299 |
AC | 0.80 | 1 | 0.80 | 61.75 | 0.0002 |
BC | 0.32 | 1 | 0.32 | 24.55 | 0.0026 |
A2 | 0.16 | 1 | 0.16 | 12.32 | 0.0127 |
B2 | 0.026 | 1 | 0.026 | 1.97 | 0.2099 |
C2 | 0.026 | 1 | 0.026 | 2.02 | 0.2055 |
A2C | 0.55 | 1 | 0.55 | 42.42 | 0.0006 |
Residual | 0.078 | 6 | 0.013 | - | - |
Cor Total | 2.46 | 16 | - | - | - |
Statistic Factors | Value | Statistic Factors | Value |
---|---|---|---|
SD | 0.11 | R-Squared | 0.9684 |
Mean | 7.62 | Adj R-Squared | 0.9157 |
CV % | 1.49 | Pred R-Squared | −0.1629 |
PRESS | 2.86 | Adeq Precision | 16.734 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Song, J.; He, Y.; Ma, G. Value Coefficient of Polyethylene Fiber Soil Embankment Slope Based on Response Surface Analysis. Polymers 2022, 14, 4295. https://doi.org/10.3390/polym14204295
Gong Y, Song J, He Y, Ma G. Value Coefficient of Polyethylene Fiber Soil Embankment Slope Based on Response Surface Analysis. Polymers. 2022; 14(20):4295. https://doi.org/10.3390/polym14204295
Chicago/Turabian StyleGong, Yafeng, Jiaxiang Song, Yulong He, and Guirong Ma. 2022. "Value Coefficient of Polyethylene Fiber Soil Embankment Slope Based on Response Surface Analysis" Polymers 14, no. 20: 4295. https://doi.org/10.3390/polym14204295
APA StyleGong, Y., Song, J., He, Y., & Ma, G. (2022). Value Coefficient of Polyethylene Fiber Soil Embankment Slope Based on Response Surface Analysis. Polymers, 14(20), 4295. https://doi.org/10.3390/polym14204295