Progress in the Preparation, Properties, and Applications of PLA and Its Composite Microporous Materials by Supercritical CO2: A Review from 2020 to 2022
Abstract
:1. Introduction
2. Supercritical CO2 Foaming Technologies
2.1. Batch Foaming Technology
2.2. Extrusion Foaming Technology
2.3. Microporous Injection Molding Foaming Technology
2.4. Other Foaming Technologies
2.5. Conclusions
3. Effect of Modifications on Foaming of PLA Composites
3.1. Chemical Modification
3.2. Filler Modification
- (1)
- Filler modification such as with natural fibers and talcum powder is simple and easy in terms of preparation.
- (2)
- Nano-scale fillers are an ideal heterogeneous nucleating agent that can greatly enhance the crystallization ability of PLA and improve cell density.
- (3)
- In terms of melt viscoelasticity, fillers can usually play a role in enhancing the strength of the melt and improving the cell structure and mechanical properties.
Research System | PLA Brand | Expansion Ratio | Cell Size | Cell Density | Reference |
---|---|---|---|---|---|
PLA/Cotton fiber | 2003D | -- | 65 µm | 3 × 108 cell/cm3 | [94] |
PLA/MCF | 4060D | ~5 | 24 µm | ~3 × 107 cell/cm3 | [52] |
CA/PLA | 4032D | -- | 0.6 µm | ~1012 cell/cm3 | [71] |
PLA/CNF | 8052D | ~3 | ~100 µm | -- | [73] |
PLA/CNF | TP-4000 | 20.4 | <40 µm | ~109 cell/cm3 | [70] |
PLA/CNC | 4060D | -- | ~50 µm | 5 × 106 cell/cm3 | [69] |
PLA/CNT/CE | 2003D | ~49.6 | ~90 µm | ~107 cell/cm3 | [95] |
PLA/CNTs/CB | 4032D | ~3 | ~13 µm | 108 cell/cm3 | [62] |
PLA/HNA | 3052D | ~6 | ~6.59 µm | ~109 cell/cm3 | [55] |
PLA/TPS | PLE001 | ~5 | ~250 µm | -- | [74] |
PLA/HNTs | 4032D | ~19 | ~150 µm | -- | [61] |
PLA/SiO2 aerogel/CE | 4043D | ~55 | 120 µm | 0.024 g/cm3 | [60] |
3.3. Blend Modification
3.4. Others
3.5. Conclusions
4. Applications of PLA Composite Foams
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
scCO2 | Supercritical carbon dioxide | PBST | Poly(butylene succinate-co-terephthalate) |
PLA | Poly(lactic acid) | CNFs | Cellulose nanofibers |
PE | polyethylene | CA | Cellulose acetate |
PS | polystyrene | PCL | Polycaprolactone |
PMMA | Poly(methyl methacrylate) | TPS | Thermoplastic starch |
Tg | Glass transition temperature | MIM | Microporous injection molding |
Tm | Melting temperature | HPMIM | High-pressure microporous injection molding |
MCF | Microcellulose fiber | PET | Poly(ethylene terephthalate) |
HNA | Hydrazide nucleating agent | RMIM | Regular microporous injection molding |
CE | Chain extender | EPDM | Ethylene-propylene terpolymer |
PBS | Poly(butylene succinate) | UV | Ultraviolet |
HNTs | Halloysite nanotubes | FDM | Fused deposition printing |
CNTs | Carbon nanotubes | VER | Volume expansion ratio |
CB | Carbon black | MDI | Diphenylmethane diisocyanate |
PLLA | Poly(l-lactide) | GP | Graphene |
PEG | Poly(ethylene glycol) | DFT | Density flooding theory |
PDLA | Poly(d-lactide) | PIF | Pressure-induced flow |
CNC | Cellulose nanocrystal |
References
- Yang, B.; Zuo, Y.; Chang, Z. Evaluation of Energy Absorption Capabilities of Polyethylene Foam under Impact Deformation. Materials 2021, 14, 3613. [Google Scholar] [CrossRef] [PubMed]
- Arora, K.A.; Lesser, A.J.; McCarthy, T.J. Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules 1998, 31, 4614–4620. [Google Scholar] [CrossRef]
- Notario, B.; Pinto, J.; Rodriguez-Perez, M.A. Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer 2015, 63, 116–126. [Google Scholar] [CrossRef]
- Nampoothiri, K.M.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Li, L.; Mi, H.; Chen, B.; Sharma, P.; Ma, H.; Hsiao, B.S.; Peng, X.; Kuang, T. Superior Impact Toughness and Excellent Storage Modulus of Poly(lactic acid) Foams Reinforced by Shish-Kebab Nanoporous Structure. ACS Appl. Mater. Interfaces 2017, 9, 21071–21076. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, D.J. Bioprocessing-No longer a field of dreams. Macromol. Symp. 2003, 201, 271–281. [Google Scholar] [CrossRef]
- Hoshino, A.; Tsuji, M.; Momochi, M.; Mizutani, A.; Sawada, H.; Kohnami, S.; Nakagomi, H.; Ito, M.; Saida, H.; Ohnishi, M.; et al. Study of the determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions. J. Polym. Environ. 2007, 15, 275–280. [Google Scholar] [CrossRef]
- Wang, L.; Lee, R.E.; Wang, G.; Chu, R.K.M.; Zhao, J.; Park, C.B. Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging. Chem. Eng. J. 2017, 327, 1151–1162. [Google Scholar] [CrossRef]
- Lim, L.T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L.; Mai, Q.; Li, M.; Wu, L.; Kong, P. Foaming behavior of poly(lactic acid) with different D-isomer content based on supercritical CO2-induced crystallization. J. Cell. Plast. 2021, 57, 675–694. [Google Scholar] [CrossRef]
- Standau, T.; Long, H.; Castellon, S.M.; Bruetting, C.; Bonten, C.; Altstaedt, V. Evaluation of the Zero Shear Viscosity, the D-Content and Processing Conditions as Foam Relevant Parameters for Autoclave Foaming of Standard Polylactide (PLA). Materials 2020, 13, 1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruetting, C.; Dreier, J.; Bonten, C.; Altstaedt, V.; Ruckdaeschel, H. Amorphous Polylactide Bead Foam-Effect of Talc and Chain Extension on Foaming Behavior and Compression Properties. J. Renew. Mater. 2021, 9, 1859–1868. [Google Scholar] [CrossRef]
- Nofar, M.; Sacligil, D.; Carreau, P.J.; Kamal, M.R.; Heuzey, M.C. Poly(lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2019, 125, 307–360. [Google Scholar] [CrossRef]
- Saeidlou, S.; Huneault, M.A.; Li, H.; Park, C.B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677. [Google Scholar] [CrossRef]
- Mekonnen, T.; Mussone, P.; Khalil, H.; Bressler, D. Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A 2013, 1, 13379–13398. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.J.; Lin, X.C.; Liu, H.B. The application of blocked polyfunctional isocyanate as a cross-linking agent in biodegradable extruded poly(lactic acid) foam. Iran. Polym. J. 2019, 28, 417–424. [Google Scholar] [CrossRef]
- Goettermann, S.; Standau, T.; Weinmann, S.; Altstaedt, V.; Bonten, C. Effect of Chemical Modification on the Thermal and Rheological Properties of Polylactide. Polym. Eng. Sci. 2017, 57, 1242–1251. [Google Scholar] [CrossRef]
- Wang, J.; Chai, J.; Wang, G.; Zhao, J.; Zhang, D.; Li, B.; Zhao, H.; Zhao, G. Strong and thermally insulating polylactic acid/glass fiber composite foam fabricated by supercritical carbon dioxide foaming. Int. J. Biol. Macromol. 2019, 138, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.-H.; Peng, X.-F.; Jing, X.; Li, L.-W.; Huang, A.; Xu, B.-P.; Chen, B.-Y.; Mi, H.-Y. Investigation of poly(L-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming. J. Mater. Res. 2016, 31, 348–359. [Google Scholar] [CrossRef]
- Nofar, M.; Tabatabaei, A.; Sojoudiasli, H.; Park, C.B.; Carreau, P.J.; Heuzey, M.C.; Kamal, M.R. Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies. Eur. Polym. J. 2017, 90, 231–244. [Google Scholar] [CrossRef]
- Li, B.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J. Fabrication of high-expansion microcellular PLA foams based on preisothermal cold crystallization and supercritical CO2 foaming. Polym. Degrad. Stab. 2018, 156, 75–88. [Google Scholar] [CrossRef]
- Lee, L.J.; Zeng, C.C.; Cao, X.; Han, X.M.; Shen, J.; Xu, G.J. Polymer nanocomposite foams. Compos. Sci. Technol. 2005, 65, 2344–2363. [Google Scholar] [CrossRef]
- Cooper, A.I. Polymer synthesis and processing using supercritical carbon dioxide. J. Mater. Chem. 2000, 10, 207–234. [Google Scholar] [CrossRef]
- Sauceau, M.; Fages, J.; Common, A.; Nikitine, C.; Rodier, E. New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Prog. Polym. Sci. 2011, 36, 749–766. [Google Scholar] [CrossRef] [Green Version]
- Kiran, E. Supercritical fluids and polymers-The year in review-2014. J. Supercrit. Fluids 2016, 110, 126–153. [Google Scholar] [CrossRef]
- Nalawade, S.P.; Picchioni, F.; Janssen, L. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Prog. Polym. Sci. 2006, 31, 19–43. [Google Scholar] [CrossRef] [Green Version]
- Azdast, T.; Hasanzadeh, R. Increasing cell density/decreasing cell size to produce microcellular and nanocellular thermoplastic foams: A review. J. Cell. Plast. 2021, 57, 769–797. [Google Scholar] [CrossRef]
- Huang, E.; Liao, X.; Zhao, C.; Park, C.B.; Yang, Q.; Li, G. Effect of Unexpected CO2’s Phase Transition on the High-Pressure Differential Scanning Calorimetry Performance of Various Polymers. ACS Sustain. Chem. Eng. 2016, 4, 1810–1818. [Google Scholar] [CrossRef]
- Takada, M.; Hasegawa, S.; Ohshima, M. Crystallization kinetics of poly(L-lactide) in contact with pressurized CO2. Polym. Eng. Sci. 2004, 44, 186–196. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, G.; Wang, G. Investigation of the influence of pressurized CO2 on the crystal growth of poly(l-lactic acid) by using an in situ high-pressure optical system. Soft Matter 2019, 15, 5714–5727. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, G.; Wang, G. Investigation on the growth of snowflake-shaped Poly(L-Lactic acid) crystal by in-situ high-pressure microscope. Polymer 2019, 177, 25–34. [Google Scholar] [CrossRef]
- Liao, R.; Yu, W.; Zhou, C. Rheological control in foaming polymeric materials: II. Semi-crystalline polymers. Polymer 2010, 51, 6334–6345. [Google Scholar] [CrossRef]
- Taki, K.; Kitano, D.; Ohshima, M. Effect of Growing Crystalline Phase on Bubble Nucleation in Poly(L-Lactide)/CO2 Batch Foaming. Ind. Eng. Chem. Res. 2011, 50, 3247–3252. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, S.; Wu, M.; Liu, W.; Wu, F.; Lee, P.C.; Zheng, W. Kinetics study of oil sorption with open-cell polypropylene/polyolefin elastomer blend foams prepared via continuous extrusion foaming. Polym. Adv. Technol. 2018, 29, 1313–1321. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Liu, X.; Liu, H.; Li, N.; Liu, C.; Schubert, D.W.; Shen, C. Facile Fabrication of Superhydrophobic and Eco-Friendly Poly(lactic acid) Foam for Oil-Water Separation via Skin Peeling. ACS Appl. Mater. Interfaces 2019, 11, 14362–14367. [Google Scholar] [CrossRef] [PubMed]
- Delabarde, C.; Plummer, C.J.G.; Bourban, P.-E.; Manson, J.-A.E. Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications. J. Mater. Sci-Mater. Med. 2012, 23, 1371–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trofimchuk, E.S.; Potseleev, V.V.; Khavpachev, M.A.; Moskvina, M.A.; Nikonorova, N.I. Polylactide-Based Porous Materials: Synthesis, Hydrolytic Degradation Features, and Application Areas. Polym. Sci. Ser. C 2021, 63, 199–218. [Google Scholar] [CrossRef]
- Morisaki, M.; Ito, T.; Hayvali, A.; Tabata, I.; Hisada, K.; Hori, T. Preparation of skinless polymer foam with supercritical carbon dioxide and its application to a photoinduced hydrogen evolution system. Polymer 2008, 49, 1611–1619. [Google Scholar] [CrossRef]
- Zakiyan, S.E.; Azizi, H.; Ghasemi, I. Effect of cell morphology on electrical properties and electromagnetic interference shielding of graphene-poly(methyl methacrylate) microcellular foams. Compos. Sci. Technol. 2018, 157, 217–227. [Google Scholar] [CrossRef]
- Sarver, J.A.; Kiran, E. Foaming of polymers with carbon dioxide-The year-in-review-2019. J. Supercrit. Fluids 2021, 173, 105166. [Google Scholar] [CrossRef]
- Nofar, M.; Park, C.B. Poly (lactic acid) foaming. Prog. Polym. Sci. 2014, 39, 1721–1741. [Google Scholar] [CrossRef]
- Jimenez, J.A.V.; Le Moigne, N.; Benezet, J.-C.; Sauceau, M.; Sescousse, R.; Fages, J. Foaming of PLA Composites by Supercritical Fluid-Assisted Processes: A Review. Molecules 2020, 25. [Google Scholar] [CrossRef]
- Najafi, N.; Heuzey, M.-C.; Carreau, P.J.; Therriault, D.; Park, C.B. Rheological and foaming behavior of linear and branched polylactides. Rheol. Acta 2014, 53, 779–790. [Google Scholar] [CrossRef]
- Matuana, L.M.; Faruk, O.; Diaz, C.A. Cell morphology of extrusion foamed poly(lactic acid) using endothermic chemical foaming agent. Bioresour. Technol. 2009, 100, 5947–5954. [Google Scholar] [CrossRef] [PubMed]
- Julien, J.M.; Quantin, J.C.; Benezet, J.C.; Bergeret, A.; Lacrampe, M.F.; Krawczak, A. Chemical foaming extrusion of poly(lactic acid) with chain-extenders: Physical and morphological characterizations. Eur. Polym. J. 2015, 67, 40–49. [Google Scholar] [CrossRef]
- Valor, D.; Montes, A.; Cozar, A.; Pereyra, C.; Martinez de la Ossa, E. Development of Porous Polyvinyl Acetate/Polypyrrole/Gallic Acid Scaffolds Using Supercritical CO2 as Tissue Regenerative Agents. Polymers 2022, 14, 672. [Google Scholar] [CrossRef]
- Pang, Y.; Cao, Y.; Zheng, W.; Park, C.B. A comprehensive review of cell structure variation and general rules for polymer microcellular foams. Chem. Eng. J. 2022, 430, 132662. [Google Scholar] [CrossRef]
- Milovanovic, S.; Markovic, D.; Mrakovic, A.; Kuska, R.; Zizovic, I.; Frerich, S.; Ivanovic, J. Supercritical CO2-assisted production of PLA and PLGA foams for controlled thymol release. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 99, 394–404. [Google Scholar] [CrossRef]
- Suethao, S.; Shah, D.U.; Smitthipong, W. Recent Progress in Processing Functionally Graded Polymer Foams. Materials 2020, 13, 4060. [Google Scholar] [CrossRef]
- Yu, K.; Ni, J.; Zhou, H.; Wang, X.; Mi, J. Effects of in-situ crystallization on poly (lactic acid) microcellular foaming: Density functional theory and experiment. Polymer 2020, 200, 122539. [Google Scholar] [CrossRef]
- Oluwabunmi, K.; D’Souza, N.A.; Zhao, W.; Choi, T.-Y.; Theyson, T. Compostable, fully biobased foams using PLA and micro cellulose for zero energy buildings. Sci. Rep. 2020, 10, 17771. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, L.; Chen, D.; Mai, Q.; Wang, M.; Wu, L.; Kong, P. Cell structure and mechanical properties of microcellular PLA foams prepared via autoclave constrained foaming. Cell. Polym. 2021, 40, 101–118. [Google Scholar] [CrossRef]
- Ni, J.; Yu, K.; Zhou, H.; Mi, J.; Chen, S.; Wang, X. Morphological evolution of PLA foam from microcellular to nanocellular induced by cold crystallization assisted by supercritical CO2. J. Supercrit. Fluids 2020, 158, 104719. [Google Scholar] [CrossRef]
- Li, R.; Ye, L.; Zhao, X.; Coates, P.; Caton-Rose, F. Enhancing Poly(lactic acid) Microcellular Foams by Formation of Distinctive Crystalline Structures. Ind. Eng. Chem. Res. 2020, 59, 7624–7632. [Google Scholar] [CrossRef]
- Li, B.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J.; Shi, Z. Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption. Sep. Purif. Technol. 2021, 257, 117949. [Google Scholar] [CrossRef]
- Li, B.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J.; Shi, Z. Super High-Expansion Poly(Lactic Acid) Foams with Excellent Oil-Adsorption and Thermal-Insulation Properties Fabricated by Supercritical CO2 Foaming. Adv. Sustain. Syst. 2021, 5, 2000295. [Google Scholar] [CrossRef]
- Wang, S.; Yang, W.; Li, X.; Hu, Z.; Wang, B.; Li, M.; Dong, W. Preparation of high-expansion open-cell polylactic acid foam with superior oil-water separation performance. Int. J. Biol. Macromol. 2021, 193, 1059–1067. [Google Scholar] [CrossRef]
- Xiang, P.; Bi, S.; Mei, F.; Deng, C.; Yu, D.; Chen, X.; Yu, P. Preparation of PLA with High Impact-Toughness and Reduced Internal Stress via Formation of Laminated, Bimodal Structure with Micro/Nanocells. Macromol. Mater. Eng. 2021, 306, 2100426. [Google Scholar] [CrossRef]
- Jia, L.J.; Phule, A.D.; Yu, Z.; Zhang, X.; Zhang, Z.X. Ultra-light poly(lactic acid)/SiO2 aerogel composite foam: A fully biodegradable and full life-cycle sustainable insulation material. Int. J. Biol. Macromol. 2021, 192, 1029–1039. [Google Scholar] [CrossRef]
- Guo, F.; Liao, X.; Li, S.; Yan, Z.; Tang, W.; Li, G. Heat insulating PLA/HNTs foams with enhanced compression performance fabricated by supercritical carbon dioxide. J. Supercrit. Fluids 2021, 177, 105344. [Google Scholar] [CrossRef]
- Li, S.; Liao, X.; Xiao, W.; Jiang, Q.; Li, G. The improved foaming behavior of PLA caused by the enhanced rheology properties and crystallization behavior via synergistic effect of carbon nanotubes and graphene. J. Appl. Polym. Sci. 2022, 139, 51874. [Google Scholar] [CrossRef]
- Longo, A.; Di Maio, E.; Di Lorenzo, M.L. Heterogeneous Bubble Nucleation by Homogeneous Crystal Nuclei in Poly(l-Lactic Acid) Foaming. Macromol. Chem. Phys. 2022, 223, 2100428. [Google Scholar] [CrossRef]
- Ren, Q.; Zhu, X.; Li, W.; Wu, M.; Cui, S.; Ling, Y.; Ma, X.; Wang, G.; Wang, L.; Zheng, W. Fabrication of super-hydrophilic and highly open-porous poly(lactic acid) scaffolds using supercritical carbon dioxide foaming. Int. J. Biol. Macromol. 2022, 205, 740–748. [Google Scholar] [CrossRef]
- Xiang, P.; Gou, L.; Zou, Y.; Chen, B.; Bi, S.; Chen, X.; Yu, P. A facile strategy for preparation of strong tough poly(lactic acid) foam with a unique microfibrillated bimodal micro/nano cellular structure. Int. J. Biol. Macromol. 2022, 199, 264–274. [Google Scholar] [CrossRef]
- Chen, P.; Gao, X.; Zhao, L.; Xu, Z.; Li, N.; Pan, X.; Dai, J.; Hu, D. Preparation of biodegradable PBST/PLA microcellular foams under supercritical CO2: Heterogeneous nucleation and anti-shrinkage effect of PLA. Polym. Degrad. Stab. 2022, 197, 109844. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, L.; Zhou, J.; Fan, X.; Xie, H.; Zhang, H.; Zhang, G.; Shi, X. Influence of Polylactide (PLA) Stereocomplexation on the Microstructure of PLA/PBS Blends and the Cell Morphology of Their Microcellular Foams. Polymers 2020, 12, 2362. [Google Scholar] [CrossRef]
- Chai, J.; Wang, G.; Zhao, J.; Zhang, A.; Shi, Z.; Wei, C.; Zhao, G. Microcellular PLA/PMMA foam fabricated by CO2 foaming with outstanding shape-memory performance. J. CO2 Util. 2021, 49, 101553. [Google Scholar] [CrossRef]
- Zhang, Y.; Duvigneau, J.; Sui, X.; Vancso, G.J. Foaming of Polylactic Acid/Cellulose Nanocrystal Composites: Pickering Emulsion Templating for High-Homogeneity Filler Dispersions. ACS Appl. Polym. Mater. 2022, 4, 111–120. [Google Scholar] [CrossRef]
- Ren, Q.; Wu, M.; Wang, L.; Zheng, W.; Hikima, Y.; Semba, T.; Ohshima, M. Cellulose nanofiber reinforced poly(lactic acid) with enhanced rheology, crystallization and foaming ability. Carbohydr. Polym. 2022, 286, 119320. [Google Scholar] [CrossRef]
- Zhang, C.; Wan, L.; Gu, H.; Hu, Q.; Ding, Y.; Ying, S. Preparation and properties of foamed cellulose acetate/polylactic acid blends. Polym. Eng. Sci. 2021, 61, 3069–3081. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Zhou, L.; Bi, Z.; Shi, M.; Wang, D.; Li, Q. Fabrication of a novel Three-Dimensional porous PCL/PLA tissue engineering scaffold with high connectivity for endothelial cell migration. Eur. Polym. J. 2021, 161, 110834. [Google Scholar] [CrossRef]
- Sadeghi, B.; Sadeghi, P.; Marfavi, Y.; Kowsari, E.; Zareiyazd, A.A.; Ramakrishna, S. Impacts of cellulose nanofibers on the morphological behavior and dynamic mechanical thermal properties of extruded polylactic acid/cellulose nanofibril nanocomposite foam. J. Appl. Polym. Sci. 2022, 139, 51673. [Google Scholar] [CrossRef]
- Chauvet, M.; Sauceau, M.; Baillon, F.; Fages, J. Blending and foaming thermoplastic starch with poly (lactic acid) by CO2-aided hot melt extrusion. J. Appl. Polym. Sci. 2021, 138, 50150. [Google Scholar] [CrossRef]
- Chauvet, M.; Sauceau, M.; Fages, J. Extrusion assisted by supercritical CO2: A review on its application to biopolymers. J. Supercrit. Fluids 2017, 120, 408–420. [Google Scholar] [CrossRef] [Green Version]
- Ameli, A.; Nofar, M.; Jahani, D.; Rizvi, G.; Park, C.B. Development of high void fraction polylactide composite foams using injection molding: Crystallization and foaming behaviors. Chem. Eng. J. 2015, 262, 78–87. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Q.; Wang, L.; Wang, C.; Guo, B.; Park, C.B.; Wang, G. Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. Eur. Polym. J. 2018, 98, 1–10. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Dong, G.; Mu, Y.; Park, C.B.; Wang, G. Lightweight, super-elastic, and thermal-sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with mold-opening. Eur. Polym. J. 2018, 103, 68–79. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, J.; Wang, G.; Zhao, H.; Lin, J.; Zhao, G.; Park, C.B. Strong and super thermally insulating in-situ nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding. Chem. Eng. J. 2020, 390, 124520. [Google Scholar] [CrossRef]
- Li, M.; Li, S.; Liu, B.; Jiang, T.; Zhang, D.; Cao, L.; He, L.; Gong, W. Rheological behavior, crystallization properties, and foaming performance of chain-extended poly (lactic acid) by functionalized epoxy. RSC Adv. 2021, 11, 32799–32809. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, G.; Chai, J.; Chang, E.; Wang, S.; Zhang, A.; Park, C.B. Polylactic acid/UV-crosslinked in-situ ethylene-propylene-diene terpolymer nanofibril composites with outstanding mechanical and foaming performance. Chem. Eng. J. 2022, 447, 137509. [Google Scholar] [CrossRef]
- Nofar, M.; Utz, J.; Geis, N.; Altstadt, V.; Ruckdaschel, H. Foam 3D Printing of Thermoplastics: A Symbiosis of Additive Manufacturing and Foaming Technology. Adv. Sci. 2022, 9, 2105701. [Google Scholar] [CrossRef] [PubMed]
- Valino, A.D.; Dizon, J.R.C.; Espera, A.H.; Chen, Q.Y.; Messman, J.; Advincula, R.C. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 2019, 98, 101162. [Google Scholar] [CrossRef]
- Chizari, K.; Arjmand, M.; Liu, Z.; Sundararaj, U.; Therriault, D. Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater. Today Commun. 2017, 11, 112–118. [Google Scholar] [CrossRef]
- Corcione, C.E.; Gervaso, F.; Scalera, F.; Padmanabhan, S.K.; Madaghiele, M.; Montagna, F.; Sannino, A.; Licciulli, A.; Maffezzoli, A. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceram. Int. 2019, 45, 2803–2810. [Google Scholar] [CrossRef]
- Shi, S.; Peng, Z.; Jing, J.; Yang, L.; Chen, Y. 3D Printing of Delicately Controllable Cellular Nanocomposites Based on Polylactic Acid Incorporating Graphene/Carbon Nanotube Hybrids for Efficient Electromagnetic Interference Shielding. ACS Sustain. Chem. Eng. 2020, 8, 7962–7972. [Google Scholar] [CrossRef]
- Choi, W.J.; Hwang, K.S.; Kwon, H.J.; Lee, C.; Kim, C.H.; Kim, T.H.; Heo, S.W.; Kim, J.-H.; Lee, J.-Y. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 110, 110693. [Google Scholar] [CrossRef] [PubMed]
- Lepcio, P.; Svatik, J.; Reznakova, E.; Zicha, D.; Lesser, A.J.; Ondreas, F. Anisotropic solid-state PLA foaming templated by crystal phase pre-oriented with 3D printing: Cell supporting structures with directional capillary transfer function. J. Mater. Chem. B 2022, 10, 2889–2898. [Google Scholar] [CrossRef]
- Rzayev, J. Synthesis of Polystyrene-Polylactide Bottlebrush Block Copolymers and Their Melt Self-Assembly into Large Domain Nanostructures. Macromolecules 2009, 42, 2135–2141. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Wen, B.; Chen, Y.; Wang, X. A Facile and Efficient Method for Preparing Chain Extended Poly(lactic acid) Foams with High Volume Expansion Ratio. J. Polym. Environ. 2020, 28, 17–31. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Chen, S.; Wang, X. Fabrication of low-density poly(lactic acid) microcellular foam by self-assembly crystallization nucleating agent. Polym. Degrad. Stab. 2022, 198. [Google Scholar] [CrossRef]
- Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A.J. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008, 41, 1352–1357. [Google Scholar] [CrossRef]
- Di, Y.W.; Iannace, S.; Di Maio, E.; Nicolais, L. Reactively modified poly(lactic acid): Properties and foam processing. Macromol. Mater. Eng. 2005, 290, 1083–1090. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, W.; Chang, E.; Chen, X.; Chen, J.; Park, C.B.; Shen, C. Foaming Behaviors and Mechanical Properties of Injection-Molded Polylactide/Cotton-Fiber Composites. Ind. Eng. Chem. Res. 2020, 59, 17885–17893. [Google Scholar] [CrossRef]
- Li, Y.; Yin, D.; Liu, W.; Zhou, H.; Zhang, Y.; Wang, X. Fabrication of biodegradable poly(lactic acid)/carbon nanotube nanocomposite foams: Significant improvement on rheological property and foamability. Int. J. Biol. Macromol. 2020, 163, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Lin, N.; Chang, P.R.; Huang, J. Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr. Polym. 2015, 129, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Lin, L.; Lee, Y.; Park, H.E. Recycling and rheology of poly(lactic acid) (PLA) to make foams using supercritical fluid. Phys. Fluids 2021, 33, 067119. [Google Scholar] [CrossRef]
- Osman, M.A.; Virgilio, N.; Rouabhia, M.; Mighri, F. Polylactic Acid (PLA) Foaming: Design of Experiments for Cell Size Control. Mater. Sci. Appl. 2022, 13, 63–77. [Google Scholar] [CrossRef]
- Park, C.B.; Padareva, V.; Lee, P.C.; Naguib, H.E. Extruded open-celled LDPE-based foams using non-homogeneous melt structure. J. Polym. Eng. 2005, 25, 239–260. [Google Scholar] [CrossRef]
- Lee, P.C.; Wang, J.; Park, C.B. Extruded open-cell foams using two semicrystalline polymers with different crystallization temperatures. Ind. Eng. Chem. Res. 2006, 45, 175–181. [Google Scholar] [CrossRef]
- Krause, B.; Sijbesma, H.J.P.; Munuklu, P.; van der Vegt, N.F.A.; Wessling, M. Bicontinuous nanoporous polymers by carbon dioxide foaming. Macromolecules 2001, 34, 8792–8801. [Google Scholar] [CrossRef]
- Huang, P.; Wu, F.; Shen, B.; Ma, X.; Zhao, Y.; Wu, M.; Wang, J.; Liu, Z.; Luo, H.; Zheng, W. Bio-inspired lightweight polypropylene foams with tunable hierarchical tubular porous structure and its application for oil-water separation. Chem. Eng. J. 2019, 370, 1322–1330. [Google Scholar] [CrossRef]
- Wang, W.; Liao, X.; Guo, F.; Wang, G.; Yan, Z.; Liu, F.; Li, G. Facile Fabrication of Lightweight Shape Memory Thermoplastic Polyurethane/Polylactide Foams by Supercritical Carbon Dioxide Foaming. Ind. Eng. Chem. Res. 2020, 59, 7611–7623. [Google Scholar] [CrossRef]
- Yan, Z.; Liao, X.; He, G.; Li, S.; Guo, F.; Zou, F.; Li, G. Green and High-Expansion PLLA/PDLA Foams with Excellent Thermal Insulation and Enhanced Compressive Properties. Ind. Eng. Chem. Res. 2020, 59, 19244–19251. [Google Scholar] [CrossRef]
- Li, B.; Ma, X.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J. Green fabrication method of layered and open-cell polylactide foams for oil-sorption via pre-crystallization and supercritical CO2-induced melting. J. Supercrit. Fluids 2020, 162, 104854. [Google Scholar] [CrossRef]
- Li, S.; Chen, T.; Liao, X.; Han, W.; Yan, Z.; Li, J.; Li, G. Effect of Macromolecular Chain Movement and the Interchain Interaction on Crystalline Nucleation and Spherulite Growth of Polylactic Acid under High-Pressure CO2. Macromolecules 2020, 53, 312–322. [Google Scholar] [CrossRef]
- Verano Naranjo, L.; Cejudo Bastante, C.; Casas Cardoso, L.; Mantell Serrano, C.; de la Ossa Fernandez, E.J.M. Supercritical Impregnation of Ketoprofen into Polylactic Acid for Biomedical Application: Analysis and Modeling of the Release Kinetic. Polymers 2021, 13, 1982. [Google Scholar] [CrossRef] [PubMed]
- Zhukov, S.; Ma, X.; von Seggern, H.; Sessler, G.M.; Ben Dali, O.; Kupnik, M.; Zhang, X. Biodegradable cellular polylactic acid ferroelectrets with strong longitudinal and transverse piezoelectricity. Appl. Phys. Lett. 2020, 117, 112901. [Google Scholar] [CrossRef]
- Humberto Tommasini Vieira Ramos, F.J.; Vieira Marques, M.d.F.; Passos Rodrigues, J.G.; Aguiar, V.d.O.; da Luz, F.S.; Garcez de Azevedo, A.R.; Monteiro, S.N. Development of novel geopolymeric foam composites coated with polylactic acid to remove heavy metals from contaminated water. Case Stud. Constr. Mater. 2022, 16, e00795. [Google Scholar] [CrossRef]
- Hasanzadeh, R.; Azdast, T.; Mojaver, M.; Darvishi, M.M.; Park, C.B. Cost-effective and reproducible technologies for fabrication of tissue engineered scaffolds: The state-of-the-art and future perspectives. Polymer 2022, 244, 16. [Google Scholar] [CrossRef]
- Xu, P.; Huang, B.; Tang, R.; Wang, Z.; Tu, J.; Ding, Y. Improved mechanical and EMI shielding properties of PLA/PCL composites by controlling distribution of PIL-modified CNTs. Adv. Compos. Hybrid Mater. 2022. [Google Scholar] [CrossRef]
Research System | PLA Brand | Method | Volume Expansion Ratio | Cell Size | Cell Density | Reference |
---|---|---|---|---|---|---|
PLA | 2003D | Pressure-induced foaming | -- | ~40 µm | ~1011 cell/cm3 | [51] |
PLA/MCF | 4060D | ~5 | 24 µm | ~3 × 107 cell/cm3 | [52] | |
PLA | 4032D | 4.1 | 6.4 µm | ~109 cell/cm3 | [53] | |
PLA/CE | 2003D | ~10 | 40 nm | 1015 cells/cm3 | [54] | |
PLA/HNA | 3053D | ~6 (reduce) | ~6.59µm | ~109 cell/cm3 | [55] | |
PLA/PBS | 4032D | ~58 | 158 µm | -- | [56] | |
PLA | 4032D | ~58 | ~50 µm | 2 × 107 cell/cm3 | [57] | |
PLA | 4032D | ~39.2 | ~150 µm | 2 × 108 cell/cm3 | [58] | |
PLA | 2003D | -- | 40 µm/180 nm | -- | [59] | |
PLA/SiO2 aerogel/CE | 3052D | ~55 (reduce) | 120 µm | 0.024 g/cm3 | [60] | |
PLA/HNTs | 4032D | ~19 | ~150 µm | [61] | ||
PLA/CNTs/CB | 4032D | ~3 | ~13 µm | 108 cell/cm3 | [62] | |
PLLA | PLA by Total Corbion | 24.8 | 40 µm | 108 cell/cm3 | [63] | |
PLA/PEG | 2003D | 9.1 | ~55 µm | ~107 cell/cm3 | [64] | |
PLA | 4032D | 1.4 | 30 µm/70 nm | 2 × 106 cell/cm3/ 2 × 1011 cell/cm3 | [65] | |
PBST/PLA | 4032D | 17 | 7.1 µm | 3.5 × 1010 cell/cm3 | [66] | |
PLA/PDLA/PBS | 4032D | Temperature-induced foaming | -- | 0.66 µm | -- | [67] |
PLA/PMMA | 4032D | ~28 | 15 µm | ~107 cell/cm3 | [68] | |
PLA/CNC | 4060D | -- | ~50 µm | 5 × 106 cell/cm3 | [69] | |
PLA/CNF | TP-4000 by UNITIKA Ltd. | 20.4 | <40 µm | >108 cell/cm3 | [70] | |
CA/PLA | 4032D | -- | 0.6 µm | ~1012 cell/cm3 | [71] |
Research System | PLA Brand | Expansion Ratio | Cell Size | Cell Density | Reference |
---|---|---|---|---|---|
PLA/CE (Epoxy-based styrene-acrylic acid oligomers) | 2003D | ~10 | 40 nm | 1015 cells/cm3 | [54] |
PLA/CE (a random copolymer of ethylene and glycidyl methacrylate) | 2003D | ~42(↑) | ~155 µm | ~1016 cells/cm3 | [90] |
PLA/CE (Acrylic acid oligomer) | 2003D | 11 | ~10 µm | 1010 cell/cm3 | [91] |
PLA/EPDM/CL (1,3,5-Triallyl-1,3,5-triazine-2,4,6 (1H,3H,5H)-trione) | 4032D | ~28 | 40 µm | 109 cell/cm3 | [81] |
PLA/SiO2 aerogel/CE (MDI) | 4043D | ~55 | 120 µm | 0.024 g/cm3 | [60] |
Research System | PLA Brand | Expansion Ratio | Cell Size | Cell Density | Reference |
---|---|---|---|---|---|
PLA/PBS | 4032D | 58 | 158 µm | -- | [56] |
PLA/PMMA | 4032D | ~28(↑) | 15 µm | ~107 cell/cm3 | [68] |
PLA/EPDM/CL | 4032D | ~28 | 40 µm | 109 cell/cm3 | [81] |
PLA/PEG | 2003D | 9.1 | ~55 µm | ~107 cell/cm3 | [64] |
TPU/PLA | 4032D | 7.1 | ~30 µm | -- | [104] |
Research System | PLA Brand | Expansion Ratio | Cell Size | Cell Density | Reference |
---|---|---|---|---|---|
PLLA/PDLA | 4032D | ~48 | 250 µm | 6 × 104 cell/cm3 | [105] |
PLA | 4032D | 4.1 | 6.4 µm | ~109 cell/cm3 | [53] |
PLA | 2003D | -- | ~40 µm | ~1011 cell/cm3 | [51] |
PLA | 4032D | -- | 40 µm/180 nm | -- | [65] |
PLA | 4032D | ~39.2 | ~150 µm | 2 × 108 cell/cm3 | [58] |
PLA | 4032D | ~58 | ~50 µm | 2 × 107 cell/cm3 | [57] |
PLA | 4032D | 1.4 | 30 µm/ 70 nm | 2 × 106 cell/cm3/ 2 × 1011 cell/cm3 | [59] |
PLLA | PLA Lx175 | 24.8 | 40 µm | 108 cell/cm3 | [63] |
Functionality | Application | Research System | Performance | Reference |
---|---|---|---|---|
Mechanical property | Aerospace /Buffer packaging | PLA/HNA | High compressive strength | [55] |
PLLA/PDLA | Good compressibility | [106] | ||
PLA/HNTs | Good compressibility | [61] | ||
PLA/PMMA | Shape memory | [68] | ||
PLA/CNTs/CB | Good pressure resistance | [62] | ||
TPU/PLA | Shape memory | [104] | ||
PLA/EDPM | Super toughness | [81] | ||
PLA | Good toughness | [65] | ||
PLA | Good impact toughness | [59] | ||
Heat preservation/insulation | Packaging /Construction | PLLA/PDLA | Thermal conductivity: 31.2 mW/(m·k) | [105] |
PLA/PET | Thermal conductivity: 26.8 mW/(m·K) | [79] | ||
PLA/HNTs | Thermal conductivity: 34.29 mW/(m·K) | [61] | ||
PLA/EPDM/CL | Thermal conductivity: 26.33 mW/(m·K) | [81] | ||
PLA/SiO2 aerogel | Thermal conductivity: 26.28 mW/(m·K) | [60] | ||
PLA | Thermal conductivity: 31.8 mW/(m·K) | [57] | ||
Adsorption/Filtration | Filtration | PLA | Adsorption capacity of CCl4 15 g/g | [58] |
PLA | Oil absorbency: 10.9–31.2 g/g | [57] | ||
PLA/PBS PLA | Oil absorbency: 7.9–21.9 g/g Adsorption capacity of CCl4 5 g/g | [56] [106] | ||
Biocompatibility | Biological tissue engineering | PLA/PEG | Sertoli cell attachment | [64] |
PLA/Ketoprofen | Drug release | [108] | ||
PLA/PCL | Hydrophilic; support Cell growth | [72] | ||
Modified PLA | Piezoelectric effect | [109] | ||
Conductive | Container/Sensor | PLA/CNTs/CB | Electrical conductivity: 1.28 × 10−1 S/m | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, K.; Mubarak, S.; Diao, X.; Cai, Z.; Zhang, C.; Wang, J.; Wu, L. Progress in the Preparation, Properties, and Applications of PLA and Its Composite Microporous Materials by Supercritical CO2: A Review from 2020 to 2022. Polymers 2022, 14, 4320. https://doi.org/10.3390/polym14204320
Peng K, Mubarak S, Diao X, Cai Z, Zhang C, Wang J, Wu L. Progress in the Preparation, Properties, and Applications of PLA and Its Composite Microporous Materials by Supercritical CO2: A Review from 2020 to 2022. Polymers. 2022; 14(20):4320. https://doi.org/10.3390/polym14204320
Chicago/Turabian StylePeng, Kangming, Suhail Mubarak, Xuefeng Diao, Zewei Cai, Chen Zhang, Jianlei Wang, and Lixin Wu. 2022. "Progress in the Preparation, Properties, and Applications of PLA and Its Composite Microporous Materials by Supercritical CO2: A Review from 2020 to 2022" Polymers 14, no. 20: 4320. https://doi.org/10.3390/polym14204320
APA StylePeng, K., Mubarak, S., Diao, X., Cai, Z., Zhang, C., Wang, J., & Wu, L. (2022). Progress in the Preparation, Properties, and Applications of PLA and Its Composite Microporous Materials by Supercritical CO2: A Review from 2020 to 2022. Polymers, 14(20), 4320. https://doi.org/10.3390/polym14204320