Phosphorylated Metal–Organic Framework for Reducing Fire Hazards of Poly(Methyl Methacrylate)
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Preparation of ZIF-8-P
2.3. Preparation of PMMA and Its Composites
2.4. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yao, C.X.; Xing, W.Y.; Ma, C.; Song, L.; Hu, Y.; Zhuang, Z.Y. Synthesis of phytic acid-based monomer for UV-Cured coating to improve fire safety of PMMA. Prog. Org. Coat. 2020, 140, 105497. [Google Scholar] [CrossRef]
- Durkin, D.P.; Gallagher, M.J.; Frank, B.P.; Knowlton, E.D.; Trulove, P.C.; Fairbrother, D.H.; Fox, D.M. Phosphorus-functionalized multi-wall carbon nanotubes as flame-retardant additives for polystyrene and poly(methyl methacrylate). J. Therm. Anal. Calorim. 2017, 130, 735–753. [Google Scholar] [CrossRef]
- Krishna, J.V.J.; Kumar, S.S.; Korobeinichev, O.P.; Vinu, R. Detailed kinetic analysis of slow and fast pyrolysis of poly(methyl methacrylate)-Flame retardant mixtures. Thermochim. Acta 2020, 687, 178545. [Google Scholar] [CrossRef]
- Xie, W.; Wang, B.W.; Liu, Y.; Wang, Q.; Yang, Z.Q. Flame retardancy of a novel high transparent poly(methyl methacrylate) modified with phosphorus-containing compound. React. Funct. Polym. 2020, 153, 104631. [Google Scholar] [CrossRef]
- Wang, L.; Bao, C.L.; Yang, W.; Hu, Y.; Song, L.; Yuen, R.K.K. Influence of iron hydroxyl phosphate particles on the thermal stability and combustible properties of poly(methyl methacrylate). Fire Saf. Sci. 2014, 11, 860–873. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhou, B.; Ma, M.; Shi, Y.Q.; Wang, X. Permanently antistatic and high transparent PMMA terpolymer: Compatilizer, antistatic agent, and the antistatic mechanism. Polym. Advan. Technol. 2018, 29, 1788–1794. [Google Scholar] [CrossRef]
- Kumar, M.; Chakraborty, S.; Upadhyaya, P.; Pugazhenthi, G. Morphological, mechanical, and thermal features of PMMA nanocomposites containing two-dimensional Co-Al layered double hydroxide. J. Appl. Polym. Sci. 2018, 135, 45774. [Google Scholar] [CrossRef]
- Xie, W.; Guo, S.W.; Liu, Y.; Chen, R.; Wang, Q. Organic-inorganic hybrid strategy based on ternary copolymerization to prepare flame retardant poly(methyl methacrylate) with high performance. Compos. Part B Eng. 2020, 203, 108437. [Google Scholar] [CrossRef]
- Tsurumaki, A.; Tajima, S.; Iwata, T.; Scrosati, B.; Ohno, H. Evaluation of ionic liquids as novel antistatic agents for polymethacrylates. Electrochim. Acta 2017, 248, 556–561. [Google Scholar] [CrossRef]
- Chen, S.; Wu, D.D.; Xu, C.B.; Ma, M.; Shi, Y.Q.; Yuan, K.Y.; Xu, R.Q.; Wang, X. The preparation and mechanism of permanently flame retardancy, antistatic, good toughness and high transparent poly(methyl methacrylate). Polym. Adv. Technol. 2021, 32, 1230–1238. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Organic-inorganic hybridization of isoreticular metal-organic framework-3 with melamine for effciently reducing the fire risk of epoxy resin. Compos. Part B Eng. 2021, 211, 108606. [Google Scholar] [CrossRef]
- Miniewicz, A.; Tomkowicz, M.; Karpinski, P.; Sznitko, L.; Mossety-Leszczak, B.; Dutkiewicz, M. Light sensitive polymer obtained by dispersion of azo-functionalized POSS nanoparticles. Chem. Phys. 2015, 456, 65–72. [Google Scholar] [CrossRef]
- Pan, Y.T.; Zhang, Z.D.; Yang, R.J. The rise of MOFs and their derivatives for flame retardant polymeric materials: A critical review. Compos. Part B Eng. 2020, 199, 108265. [Google Scholar] [CrossRef]
- Hou, Y.B.; Liu, L.X.; Qiu, S.L.; Zhou, X.; Gui, Z.; Hu, Y. DOPO-modified two-dimensional Co-based metal−organic framework: Preparation and application for enhancing fire safety of poly(lactic acid). ACS Appl. Mater. Inter. 2018, 10, 8274–8286. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.W.; Dai, X.; Cao, Y.; Li, J.W.; Huo, C.G.; Wang, X.L. Degradable poly(lactic acid)/metal–organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind. Eng. Chem. Res. 2017, 56, 3887–3894. [Google Scholar] [CrossRef]
- Xu, W.Z.; Wang, G.S.; Liu, Y.C.; Chen, R.; Li, W. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin. RSC Adv. 2018, 8, 2575–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.S.; Xu, W.Z.; Chen, R.; Li, W.; Liu, Y.C.; Yang, K. Synergistic effect between zeolitic imidazolate framework-8 and expandable graphite to improve the flame retardancy and smoke suppression of polyurethane elastomer. J. Appl. Polym. Sci. 2020, 137, 48048. [Google Scholar] [CrossRef]
- Xu, B.L.; Xu, W.Z.; Wang, G.S.; Liu, L.C.; Xu, J. Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin. Polym. Adv. Technol. 2018, 29, 1733–1743. [Google Scholar] [CrossRef]
- Shi, X.X.; Jiang, S.H.; Hu, Y.; Peng, X.F.; Yang, H.Y.; Qian, X.D. Phosphorylated chitosan-cobalt complex: A novel green flame retardant for polylactic acid. Polym Adv Technol. 2018, 29, 860–866. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.D.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhang, L.; Yang, Y.X.; Wang, D.Y. Green synthesis of biomass phytic acid-functionalized UiO-66-NH2 hierarchical hybrids toward fire safety of epoxy resin. ACS Sustain. Chem. Eng. 2020, 8, 994–1003. [Google Scholar] [CrossRef]
- Wang, L.; Wu, S.H.; Dong, X.Y.; Wang, R.; Zhang, L.Q.; Wang, J.L.; Zhong, J.; Wu, L.X.; Wang, X. A pre-constructed graphene–ammonium polyphosphate aerogel (GAPPA) for efficiently enhancing the mechanical and fire-safety performances of polymers. J. Mater. Chem. A 2018, 6, 4449–4457. [Google Scholar] [CrossRef]
- Chen, S.; Xu, C.B.; Ma, M.; Shi, Y.Q.; He, H.W.; Yuan, K.Y.; Xu, R.Q.; Wang, X. Application of solubility parameters in the preparation of PMMA with permanent antistatic, high toughness, and excellent optical properties. Polym. Adv. Technol. 2021, 32, 3750–3758. [Google Scholar] [CrossRef]
- Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015, 10, 277–283. [Google Scholar] [CrossRef]
- Xu, L.J.; Jiang, J.C.; Jia, X.L.; Hu, Y.Y.; Ni, L.; Li, C.; Guo, W.J. Preparation and study on the flame-retardant properties of CNTs/PMMA microspheres. ACS Omega 2022, 7, 1347–1356. [Google Scholar] [CrossRef]
- Meng, D.H.; Ma, Z.Y.; Leng, Q.; Zhang, Z.H.; Ning, H.Z.; Peng, X.P.; Wang, Y.H. A flame-retardant DOPO-MgAl-LDH was prepared and applied in poly (methyl methacrylate) resin. Polym. Advan. Technol. 2020, 31, 73–85. [Google Scholar] [CrossRef]
- Lars, P. A case study on the thermal degradation of an acrylate-type polyurethane wood coating using thermogravimetry coupled with evolved gas analysis. Prog. Org. Coat. 2021, 157, 106331. [Google Scholar]
- Ai, L.H.; Chen, S.S.; Zeng, J.M.; Liu, P.; Liu, W.S.; Pan, Y.H.; Liu, D.F. Synthesis and flame retardant properties of cyclophosphazene derivatives containing boron. Polym. Degrad. Stabil. 2018, 155, 250–261. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.L.; Zheng, L.H.; Li, Z.M.; Wu, L.X.; Wang, X. Superelastic, anticorrosive, and flame-resistant nitrogen containing resorcinol formaldehyde/graphene oxide composite aerogels. ACS Sustain. Chem. Eng. 2019, 7, 10873–10879. [Google Scholar] [CrossRef]
- Lin, D.M.; Zeng, X.R.; Li, H.Q.; Lai, X.J.; Wu, T.Y. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction. J. Colloid Interf. Sci. 2019, 533, 198–206. [Google Scholar] [CrossRef]
Samples | Nanoindentation | TGA | MCC | ||||||
---|---|---|---|---|---|---|---|---|---|
Reduced Modulus (GPa) | Hardness (GPa) | Nitrogen Atmosphere | Air Atmosphere | PHRR (W/g) | HRC (J/g/K) | THR (kJ/g) | |||
T-50 (°C) | Residue at 700 °C (%) | T-50 (°C) | Residue at 700 °C (%) | ||||||
PMMA | 6.258 | 0.344 | 356.474 | 0 | 318.607 | 0 | 233.303 | 225.200 | 16.700 |
PMMA/ZIF-8 | 7.248 | 0.470 | 377.148 | 8.562 | 343.231 | 4.140 | 195.939 | 189.134 | 14.050 |
PMMA/ZIF-8-P | 8.565 | 0.602 | 380.524 | 12.582 | 358.437 | 5.648 | 170.483 | 164.562 | 12.280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Hu, X.; Mao, Z.; Wang, J.; Wang, X. Phosphorylated Metal–Organic Framework for Reducing Fire Hazards of Poly(Methyl Methacrylate). Polymers 2022, 14, 4871. https://doi.org/10.3390/polym14224871
Wang L, Hu X, Mao Z, Wang J, Wang X. Phosphorylated Metal–Organic Framework for Reducing Fire Hazards of Poly(Methyl Methacrylate). Polymers. 2022; 14(22):4871. https://doi.org/10.3390/polym14224871
Chicago/Turabian StyleWang, Lei, Ximiao Hu, Zhelin Mao, Jianlei Wang, and Xin Wang. 2022. "Phosphorylated Metal–Organic Framework for Reducing Fire Hazards of Poly(Methyl Methacrylate)" Polymers 14, no. 22: 4871. https://doi.org/10.3390/polym14224871
APA StyleWang, L., Hu, X., Mao, Z., Wang, J., & Wang, X. (2022). Phosphorylated Metal–Organic Framework for Reducing Fire Hazards of Poly(Methyl Methacrylate). Polymers, 14(22), 4871. https://doi.org/10.3390/polym14224871