Fabric Impregnation with Shear Thickening Fluid for Ballistic Armor Polymer Composites: An Updated Overview
Abstract
:1. Introduction
2. Theoretical Basis
2.1. Shear Thickening Behavior
2.2. Ballistic Fabrics Impregnated with STF
- Impact velocity;
- Distance between target and gun barrel;
- Boundary conditions;
- Angle of incidence;
- Point of impact;
- Shot location.
3. State-of-the-Art
3.1. Research Works Selection
3.2. Discussion
4. Future Trends
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
(CH)ClSi | dichlorodimethylsilane |
Al2O3 | alumina |
B4C | boron carbide |
BABT | behind armor blunt trauma |
BFS | backface signature |
BPI | ballistic performance index |
EER | energy enhancement ratio |
EG | ethylene glycol |
NIJ | National Institute of Justice |
PC | polycarbonate |
PEG | polyethylene glycol |
PMC | polymer matrix composites |
PVAc | polyvinyl acetate |
SEA | specific energy absorption |
SiC | silicon carbide |
SiO2 | silica |
STF | shear thickening fluid |
UHMWPE | ultra high molecular weight polyethylene |
References
- Yadav, R.; Naebe, M.; Wang, X.; Kandasubramanian, B. Body armour materials: From steel to contemporary biomimetic systems. RSC Adv. 2016, 6, 115145–115174. [Google Scholar] [CrossRef]
- Mawkhlieng, U.; Majumdar, A. Soft body armour. Text. Prog. 2019, 51, 139–224. [Google Scholar] [CrossRef]
- Hudiakov, Y.; Filippovich, Y. Early medieval armor from southern Siberia. Archaeol. Ethnol. Anthropol. Eurasia 2017, 45, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, M.J. Weapons and Fighting Techiniques of the Medieval Warrior: 1000-1500 AD; Chartwell Books: New York, NY, USA, 2016. [Google Scholar]
- Laible, R. Ballistic Materials and Penetration Mechanics; Elsevier: Amsterdam, The Netherlands, 2012; Volume 5. [Google Scholar]
- Hazell, P.J. Armour: Materials, Theory, and Design; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Matchen, B. Applications of ceramics in armor products. In Key Engineering Materials; Trans Tech Publications Ltd.: Zurich, Switzerland, 1996; Volume 122, pp. 333–344. [Google Scholar] [CrossRef]
- Hannon, F.; Abbott, K. Ceramic armor stops bullets, lowers weight. Mater. Eng. 1968, 68, 42–43. [Google Scholar]
- Silveira, P.; Silva, T.; Ribeiro, M.; Rodrigues de Jesus, P.; Credmann, P.; Gomes, A. A Brief Review of Alumina, Silicon Carbide and Boron Carbide Ceramic Materials for Ballistic Applications. Acad. Lett. 2021, 3742, 1–11. [Google Scholar] [CrossRef]
- Andraskar, N.D.; Tiwari, G.; Goel, M.D. Impact response of ceramic structures-A review. Ceram. Int. 2022, 48, 27262–27279. [Google Scholar] [CrossRef]
- Elsheikh, A. Bistable Morphing Composites for Energy-Harvesting Applications. Polymers 2022, 14, 1893. [Google Scholar] [CrossRef]
- Showaib, E.A.; Elsheikh, A.H. Effect of surface preparation on the strength of vibration welded butt joint made from PBT composite. Polym. Test. 2020, 83, 106319. [Google Scholar] [CrossRef]
- NIJ 0101.06; Ballistic Resistance of Body Armor. National Institute of Justice: Washington, DC, USA, 2008.
- Nayak, R.; Crouch, I.; Kanesalingam, S.; Ding, J.; Tan, P.; Lee, B.; Miao, M.; Ganga, D.; Wang, L. Body armor for stab and spike protection, Part 1: Scientific literature review. Text. Res. J. 2018, 88, 812–832. [Google Scholar] [CrossRef]
- Mawkhlieng, U.; Majumdar, A.; Laha, A. A review of fibrous materials for soft body armour applications. RSC Adv. 2020, 10, 1066–1086. [Google Scholar] [CrossRef]
- Fan, T.; Sun, Z.; Zhang, Y.; Li, Y.; Chen, Z.; Huang, P.; Fu, S. Novel Kevlar fabric composite for multifunctional soft body armor. Compos. Part B Eng. 2022, 110106. [Google Scholar] [CrossRef]
- Pinkos, J.; Stempien, Z.; Smędra, A. Experimental analysis of ballistic trauma in a human body protected with 30 layer packages made of biaxial and triaxial Kevlar 29 fabrics. Def. Technol. 2022. [Google Scholar] [CrossRef]
- Tang, F.; Dong, C.; Yang, Z.; Kang, Y.; Huang, X.; Li, M.; Chen, Y.; Cao, W.; Huang, C.; Guo, Y.; et al. Protective performance and dynamic behavior of composite body armor with shear stiffening gel as buffer material under ballistic impact. Compos. Sci. Technol. 2022, 218, 109190. [Google Scholar] [CrossRef]
- Chandekar, G.S.; Thatte, B.S.; Kelkar, A.D. On the behavior of fiberglass epoxy composites under low velocity impact loading. Adv. Mech. Eng. 2010, 2, 621406. [Google Scholar] [CrossRef] [Green Version]
- Abtew, M.A.; Boussu, F.; Bruniaux, P. 3D Woven Fabrics-A Promising Structure for Women Soft Body Armor Development. In Advanced Weaving Technology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 607–631. [Google Scholar]
- Deora, P.S.; Khurana, M.; Muhal, R.A.; Upadhyay, D.; Goswami, C. A review on fibrous materials for body armor application. Mater. Today Proc. 2022, 60, 2230–2235. [Google Scholar] [CrossRef]
- Yanen, C.; Solmaz, M.Y. Ballistic tests of lightweight hybrid composites for body armor. Mater. Test. 2019, 61, 425–433. [Google Scholar] [CrossRef]
- Laha, A.; Majumdar, A. Interactive effects of p-aramid fabric structure and shear thickening fluid on impact resistance performance of soft armor materials. Mater. Des. 2016, 89, 286–293. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.; Huang, G. Ballistic performance of B4C/STF/Twaron composite fabric. Compos. Struct. 2022, 279, 114754. [Google Scholar] [CrossRef]
- Zhang, T.G.; Satapathy, S.S.; Vargas-Gonzalez, L.R.; Walsh, S.M. Ballistic impact response of ultra-high-molecular-weight polyethylene (UHMWPE). Compos. Struct. 2015, 133, 191–201. [Google Scholar] [CrossRef]
- Arora, S.; Majumdar, A.; Butola, B.S. Soft armour design by angular stacking of shear thickening fluid impregnated high-performance fabrics for quasi-isotropic ballistic response. Compos. Struct. 2020, 233, 111720. [Google Scholar] [CrossRef]
- Wu, S.; Sikdar, P.; Bhat, G.S. Recent progress in developing ballistic and anti-impact materials: Nanotechnology and main approaches. Def. Technol. 2022. [Google Scholar] [CrossRef]
- Abtew, M.A.; Boussu, F.; Bruniaux, P.; Loghin, C.; Cristian, I. Enhancing the ballistic performances of 3D warp interlock fabric through internal structure as new material for seamless female soft body armor development. Appl. Sci. 2020, 10, 4873. [Google Scholar] [CrossRef]
- Purushothaman, A.; Coimbatore, G.; Ramkumar, S.S. Soft body armor for law enforcement applications. J. Eng. Fibers Fabr. 2013, 8, 97–103. [Google Scholar] [CrossRef]
- Goode, T.; Shoemaker, G.; Schultz, S.; Peters, K.; Pankow, M. Soft body armor time-dependent back face deformation (BFD) with ballistics gel backing. Compos. Struct. 2019, 220, 687–698. [Google Scholar] [CrossRef]
- Alkhatib, F.; Mahdi, E.; Dean, A. Design and evaluation of hybrid composite plates for ballistic protection: Experimental and numerical investigations. Polymers 2021, 13, 1450. [Google Scholar] [CrossRef]
- Wagner, N.; Wetzel, E. Advanced body armor utilizing shear thickening fluids. In Proceedings of the 23rd Army Science Conference, Orlando, FL, USA, 2–5 December 2002; Volume 3. [Google Scholar]
- Egres, R., Jr.; Lee, Y.; Kirkwood, J.; Kirkwood, K.; Wetzl, E.; Wagner, N. Liquid armor: Protective fabrics utilising shear thickening fluids. In Proceedings of the 4th International Conference of Safety and Protective Fabrics, Roseville, MN, USA, 26–27 October 2004; Volume 26. [Google Scholar]
- Gates, L.E., Jr. Evaluation and Development of Fluid Armor Systems; Technical Report; Hughes Aircraft Co.: Glendale, CA, USA, 1968. [Google Scholar]
- Lee, Y.S.; Wetzel, E.D.; Wagner, N.J. The ballistic impact characteristics of Kevlar R woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 2003, 38, 9. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Bao, L.; Yang, W.; Zhou, F.; Liu, W. Enhancement of the ballistic performance of aramid fabric with polyurethane and shear thickening fluid. Mater. Des. 2020, 196, 109015. [Google Scholar] [CrossRef]
- Lu, Z.; Yuan, Z.; Chen, X.; Qiu, J. Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact. Compos. Struct. 2019, 227, 111208. [Google Scholar] [CrossRef]
- Gurgen, S.; Kushan, M.C. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 2017, 64, 296–306. [Google Scholar] [CrossRef]
- Khodadadi, A.; Liaghat, G.; Vahid, S.; Sabet, A.; Hadavinia, H. Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid. Compos. Part B Eng. 2019, 162, 643–652. [Google Scholar] [CrossRef]
- Chatterjee, V.A.; Verma, S.K.; Bhattacharjee, D.; Biswas, I.; Neogi, S. Enhancement of energy absorption by incorporation of shear thickening fluids in 3D-mat sandwich composite panels upon ballistic impact. Compos. Struct. 2019, 225, 111148. [Google Scholar] [CrossRef]
- Haris, A.; Lee, H.; Tay, T.; Tan, V. Shear thickening fluid impregnated ballistic fabric composites for shock wave mitigation. Int. J. Impact Eng. 2015, 80, 143–151. [Google Scholar] [CrossRef]
- Khodadadi, A.; Liaghat, G.; Taherzadeh-Fard, A.; Shahgholian-Ghahfarokhi, D. Impact characteristics of soft composites using shear thickening fluid and natural rubber—A review of current status. Compos. Struct. 2021, 271, 114092. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, Z.; Yan, R.; Wei, S.; Zhang, W.; Lu, S.; Jia, L. Processing technology and ballistic-resistant mechanism of shear thickening fluid/high-performance fiber-reinforced composites: A review. Compos. Struct. 2021, 266, 113806. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, R.; Zhang, Q.; Jia, L. The numerical simulation of the mechanical failure behavior of shear thickening fluid/fiber composites: A review. Polym. Adv. Technol. 2022, 33, 20–33. [Google Scholar] [CrossRef]
- Zarei, M.; Aalaie, J. Application of shear thickening fluids in material development. J. Mater. Res. Technol. 2020, 9, 10411–10433. [Google Scholar] [CrossRef]
- Gürgen, S.; Kuşhan, M.C.; Li, W. Shear thickening fluids in protective applications: A review. Prog. Polym. Sci. 2017, 75, 48–72. [Google Scholar] [CrossRef] [Green Version]
- Barnes, H. Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 1989, 33, 329–366. [Google Scholar] [CrossRef]
- Cheng, X.; McCoy, J.H.; Israelachvili, J.N.; Cohen, I. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 2011, 333, 1276–1279. [Google Scholar] [CrossRef] [Green Version]
- Kalman, D.; Schein, J.; Houghton, J.; Laufer, C.; Wetzel, E.; Wagner, N. Polymer dispersion based shear thickening fluid-fabrics for protective applications. In Proceedings of the SAMPE, Baltimore, MD, USA, 3–7 June 2007. [Google Scholar]
- Hasanzadeh, M.; Mottaghitalab, V.; Rezaei, M. Rheological and viscoelastic behavior of concentrated colloidal suspensions of silica nanoparticles: A response surface methodology approach. Adv. Powder Technol. 2015, 26, 1570–1577. [Google Scholar] [CrossRef]
- Hejazi, S.M.; Kadivar, N.; Sajjadi, A. Analytical assessment of woven fabrics under vertical stabbing— The role of protective clothing. Forensic Sci. Int. 2016, 259, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Kanesalingam, S.; Nayak, R.; Wang, L.; Padhye, R.; Arnold, L. Stab and puncture resistance of silica-coated Kevlar–wool and Kevlar–wool–nylon fabrics in quasistatic conditions. Text. Res. J. 2019, 89, 2219–2235. [Google Scholar] [CrossRef]
- Li, C.s.; Huang, X.c.; Li, Y.; Yang, N.; Shen, Z.; Fan, X.h. Stab resistance of UHMWPE fiber composites impregnated with thermoplastics. Polym. Adv. Technol. 2014, 25, 1014–1019. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, G.; Zhou, L.; Li, J.; Shi, X. Dynamic/quasi-static stab-resistance and mechanical properties of soft body armour composites constructed from Kevlar fabrics and shear thickening fluids. RSC Adv. 2017, 7, 3983–39813. [Google Scholar] [CrossRef] [Green Version]
- Rubin, W.; Wen, Z.; Feng, L.; Yingjian, L.; Wenting, Z.; Yongfang, L.; Bin, D.; Xiaowei, W. Enhancing stab resistance of thermoset–aramid composite fabrics by coating with SiC particles. J. Ind. Text. 2019, 48, 1228–1241. [Google Scholar] [CrossRef]
- Sheikhi, M.R.; Gürgen, S. Anti-impact design of multi-layer composites enhanced by shear thickening fluid. Compos. Struct. 2022, 279, 114797. [Google Scholar] [CrossRef]
- Yang, J.S.; Chen, S.Y.; Li, S.; Pang, Y.Z.; Schmidt, R.; Schröder, K.U.; Qu, J.; Wu, L.Z. Dynamic responses of hybrid lightweight composite sandwich panels with aluminium pyramidal truss cores. J. Sandw. Struct. Mater. 2021, 23, 2176–2195. [Google Scholar] [CrossRef]
- Sun, L.; Wang, G.; Zhang, C.; Jin, Q.; Song, Y. On the rheological properties of multi-walled carbon nano-polyvinylpyrrolidone/ silicon-based shear thickening fluid. Nanotechnol. Rev. 2021, 10, 1339–1348. [Google Scholar] [CrossRef]
- Sheng, X.; Qin, J.; Wang, T.; Yun, J.; Zhang, G. Properties of Kevlar fabric composites reinforced by STF composed of monodisperse polystyrene microspheres. Thin-Walled Struct. 2021, 167, 108238. [Google Scholar] [CrossRef]
- Lu, Z.; Yuan, Z.; Qiu, J. Effect of particle size of fumed silica on the puncture resistance of fabrics impregnated with shear thickening fluid. J. Eng. Fibers Fabr. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Gowthaman, S.; Sekhar, D.R. Enhancing the interyarn friction properties of kevlar and glass fabrics through ZnO nanowire coating. J. Compos. Mater. 2021, 55, 1255–1266. [Google Scholar] [CrossRef]
- Dewangan, M.K.; Panigrahi, S.K. Factors influencing the ballistic impact mechanisms of textile composite materials: A review. Polym. Adv. Technol. 2021, 32, 1901–1923. [Google Scholar] [CrossRef]
- Amirshirzad, F.; Ezazshahabi, N.; Mousazadegan, F. Assessment of the knife penetration resistance of single and double-layer metal reinforced fabrics. Forensic Sci. Int. 2021, 318, 11069. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, X.; Xue, B.; Liu, H.; Wen, Y.; Xu, C. High-Strain-Rate Compressive Behavior of UHMWPE Fiber Laminate. Appl. Sci. 2020, 10, 1505. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yu, K.; Zhang, D.; Qian, K. The cut resistant characteristics of organic high-performance yarns and STF/yarns. J. Ind. Text. 2020, 49, 1317–1333. [Google Scholar] [CrossRef]
- Liu, X.Q.; Bao, R.Y.; Wu, X.J.; Yang, W.; Xie, B.H.; Yang, M.B. Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid. RSC Adv. 2015, 5, 18367–18374. [Google Scholar] [CrossRef]
- Wu, L.; Wang, J.; Jiang, Q.; Lu, Z.; Wang, W.; Lin, J.H. Low-velocity impact behavior of flexible sandwich composite with polyurethane grid sealing shear thickening fluid core. J. Sandw. Struct. Mater. 2020, 22, 1274–1291. [Google Scholar] [CrossRef]
- Bossis, G.; Brady, J. The rheology of Brownian suspensions. J. Chem. Phys. 1989, 91, 1866–1874. [Google Scholar] [CrossRef]
- Wetzel, E.D.; Lee, Y.; Egres, R.; Kirkwood, K.; Kirkwood, J.; Wagner, N. The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)-kevlar composites. AIP Conf. Proc. 2004, 712, 288–293. [Google Scholar] [CrossRef]
- Srivastava, A.; Majumdar, A.; Butola, B. Improving the impact resistance of textile structures by using shear thickening fluids: A review. Crit. Rev. Solid State Mater. Sci. 2012, 37, 115–129. [Google Scholar] [CrossRef]
- Maranzano, B.J.; Wagner, N.J. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J. Chem. Phys. 2001, 114, 10514–10527. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.W.; Kim, I.J.; Kim, C.G. The influence of the particle size of silica on the ballistic performance of fabrics impregnated with silica colloidal suspension. J. Compos. Mater. 2009, 43, 2679–2698. [Google Scholar] [CrossRef]
- Asija, N.; Chouhan, H.; Gebremeskel, S.A.; Bhatnagar, N. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica. J. Nanoparticle Res. 2017, 19, 1–18. [Google Scholar] [CrossRef]
- Kalman, D.P.; Merrill, R.L.; Wagner, N.J.; Wetzel, E.D. Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle- fluid suspensions. ACS Appl. Mater. Interfaces 2009, 1, 2602–2612. [Google Scholar] [CrossRef] [PubMed]
- Kalman, D.P.; Wagner, N.J. Microstructure of shear-thickening concentrated suspensions determined by flow-USANS. Rheol. Acta 2009, 48, 897–908. [Google Scholar] [CrossRef]
- Otsubo, Y. Rheological behavior of suspensions flocculated by weak bridging of polymer coils. J. Colloid Interface Sci. 1999, 215, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, S.S.; Wagner, N.J. Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersions. Rheol. Acta 2005, 44, 360–371. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, G.; Shi, X. Study of a shear thickening fluid: The suspensions of monodisperse polystyrene microspheres in polyethylene glycol. J. Dispers. Sci. Technol. 2017, 38, 935–942. [Google Scholar] [CrossRef]
- Bilisik, K. Two-dimensional (2D) fabrics and three-dimensional (3D) preforms for ballistic and stabbing protection: A review. Text. Res. J. 2017, 87, 2275–2304. [Google Scholar] [CrossRef]
- Czech, K.; Oliwa, R.; Krajewski, D.; Bulanda, K.; Oleksy, M.; Budzik, G.; Mazurkow, A. Hybrid Polymer Composites Used in the Arms Industry: A Review. Materials 2021, 14, 3047. [Google Scholar] [CrossRef]
- Mishra, V.D.; Mishra, A.; Singh, A.; Verma, L.; Rajesh, G. Ballistic impact performance of UHMWP fabric impregnated with shear thickening fluid nanocomposite. Compos. Struct. 2022, 281, 114991. [Google Scholar] [CrossRef]
- Park, J.L.; Chi, Y.S.; Kang, T.J. Ballistic performance of hybrid panels composed of unidirectional/woven fabrics. Text. Res. J. 2013, 83, 471–486. [Google Scholar] [CrossRef]
- Cao, S.; Pang, H.; Zhao, C.; Xuan, S.; Gong, X. The CNT/PSt-EA/Kevlar composite with excellent ballistic performance. Compos. Part B Eng. 2020, 185, 107793. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Mottaghitalab, V.; Rezaei, M.; Babaei, H. Numerical and experimental investigations into the response of STF-treated fabric composites undergoing ballistic impact. Thin-Walled Struct. 2017, 119, 700–706. [Google Scholar] [CrossRef]
- Wei, R.; Dong, B.; Wang, F.; Yang, J.; Jiang, Y.; Zhai, W.; Li, H. Effects of silica morphology on the shear-thickening behavior of shear thickening fluids and stabbing resistance of fabric composites. J. Appl. Polym. Sci. 2020, 137, 48809. [Google Scholar] [CrossRef]
- Gürgen, S. An investigation on composite laminates including shear thickening fluid under stab condition. J. Compos. Mater. 2019, 53, 1111–1122. [Google Scholar] [CrossRef]
- Zhang, X.; Li, T.T.; Peng, H.K.; Wang, Z.; Huo, J.; Lou, C.W.; Lin, J.H. Effects of bi-particle-sized shear thickening fluid on rheological behaviors and stab resistance of Kevlar fabrics. J. Ind. Text. 2022, 51, 3014S–3029S. [Google Scholar] [CrossRef]
- Tabiei, A.; Nilakantan, G. Ballistic impact of dry woven fabric composites: A review. Appl. Mech. Rev. 2008, 61, 010801. [Google Scholar] [CrossRef]
- Cheeseman, B.A.; Bogetti, T.A. Ballistic impact into fabric and compliant composite laminates. Compos. Struct. 2003, 61, 161–173. [Google Scholar] [CrossRef]
- Montgomery, T.; Grady, P.; Tomasino, C. The effects of projectile geometry on the performance of ballistic fabrics. Text. Res. J. 1982, 52, 442–450. [Google Scholar] [CrossRef]
- Shockey, D.A.; Erlich, D.C.; Simons, J.W. Improved Barriers to Turbine Engine Fragments: Interim Report III; Technical Report; SRI International: Menlo Park, CA, USA, 2001. [Google Scholar]
- Karahan, M.; Jabbar, A.; Karahan, N. Ballistic impact behavior of the aramid and ultra-high molecular weight polyethylene composites. J. Reinf. Plast. Compos. 2015, 34, 37–48. [Google Scholar] [CrossRef]
- Othman, A.R.; Hassan, M.H. Effect of different construction designs of aramid fabric on the ballistic performances. Mater. Des. 2013, 44, 407–413. [Google Scholar] [CrossRef]
- Tan, V.; Tay, T.; Teo, W. Strengthening fabric armour with silica colloidal suspensions. Int. J. Solids Struct. 2005, 42, 1561–1576. [Google Scholar] [CrossRef]
- Park, S.J.; Seo, M.K.; Ma, T.J.; Lee, D.R. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites. J. Colloid Interface Sci. 2002, 252, 249–255. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, Z.Z.; Liu, W.M.; Su, F.H.; Zhang, H.J. Effect of plasma treatment of Kevlar fabric on the tribological behavior of Kevlar fabric/phenolic composites. Tribol. Int. 2009, 42, 243–249. [Google Scholar] [CrossRef]
- Chu, Y.; Chen, X.; Sheel, D.W.; Hodgkinson, J.L. Surface modification of aramid fibers by atmospheric pressure plasma-enhanced vapor deposition. Text. Res. J. 2014, 84, 1288–1297. [Google Scholar] [CrossRef]
- Sun, D.; Chen, X. Plasma modification of Kevlar fabrics for ballistic applications. Text. Res. J. 2012, 82, 1928–1934. [Google Scholar] [CrossRef]
- Kamal, A.; Ashmawy, M.; Algazzar, A.M.; Elsheikh, A.H. Fabrication techniques of polymeric nanocomposites: A comprehensive review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 4843–4861. [Google Scholar] [CrossRef]
- Ávila, A.F.; de Oliveira, A.M.; Leão, S.G.; Martins, M.G. Aramid fabric/nano-size dual phase shear thickening fluid composites response to ballistic impact. Compos. Part A Appl. Sci. Manuf. 2018, 112, 468–474. [Google Scholar] [CrossRef]
- Arora, S.; Majumdar, A.; Singh Butola, B. Interplay of fabric structure and shear thickening fluid impregnation in moderating the impact response of high-performance woven fabrics. J. Compos. Mater. 2020, 54, 4387–4395. [Google Scholar] [CrossRef]
- Srivastava, A.; Butola, B.S.; Majumdar, A. Improving the impact resistance performance of STF treated Kevlar fabric structures. Mater. Today: Proc. 2019, 16, 1538–1541. [Google Scholar] [CrossRef]
- Crouch, I.G. Body armour–New materials, new systems. Def. Technol. 2019, 15, 241–253. [Google Scholar] [CrossRef]
- Mawkhlieng, U.; Majumdar, A. Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics. Compos. Part B Eng. 2019, 175, 107167. [Google Scholar] [CrossRef]
- Yang, C.C.; Ngo, T.; Tran, P. Influences of weaving architectures on the impact resistance of multi-layer fabrics. Mater. Des. 2015, 85, 282–295. [Google Scholar] [CrossRef]
- NIJ 0104.04; Ballistic Resistance of Personal Body Armor. National Institute of Justice: Washington, DC, USA, 2000.
- Morye, S.; Hine, P.; Duckett, R.; Carr, D.; Ward, I. Modelling of the energy absorption by polymer composites upon ballistic impact. Compos. Sci. Technol. 2000, 60, 2631–2642. [Google Scholar] [CrossRef]
- Weerasinghe, D.; Mohotti, D.; Anderson, J. Incorporation of shear thickening fluid effects into computational modelling of woven fabrics subjected to impact loading: A review. Int. J. Prot. Struct. 2020, 11, 340–378. [Google Scholar] [CrossRef]
- Liu, L.; Cai, M.; Liu, X.; Zhao, Z.; Chen, W. Ballistic impact performance of multi-phase STF-impregnated Kevlar fabrics in aero-engine containment. Thin-Walled Struct. 2020, 157, 107103. [Google Scholar] [CrossRef]
- Thilagavathi, G.; Raja, A.; Kannaian, T. Nanotechnology and Protective Clothing for Defence Personnel. Def. Sci. J. 2008, 58, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Rosen, B.A.; Laufer, C.N.; Kalman, D.P.; Wetzel, E.D.; Wagner, N.J. Multi-threat performance of kaolin-based shear thickening fluid (STF)-treated fabrics. In Proceedings of the SAMPE, Baltimore, MD, USA, 3–7 June 2007; Volume 3. [Google Scholar]
- Nam, C.H.; Decker, M.J.; Halbach, C.; Wetzel, E.D.; Wagner, N.J. Ballistic and rheological properties of stfs reinforced by short discontinuous fibers. In Proceedings of the SAMPE, Long Beach, CA, USA, 1–5 May 2005. [Google Scholar]
- Ding, J.; Tracey, P.J.; Li, W.; Peng, G.; Whitten, P.G. Review on shear thickening fluids and applications. Text. Light Ind. Sci. Technol. 2013, 2, 15. [Google Scholar]
- Decker, M.; Egres, R.; Wetzel, E.; Wagner, N. Low velocity ballistic properties of shear thickening fluid (STF)-fabric composites. In Proceedings of the 22nd International Symposium International Symposium on Ballistics, Vancouver, BC, Canada, 14–18 November 2005; pp. 18–25. [Google Scholar]
- Hasanzadeh, M.; Mottaghitalab, V. The Role of Shear-Thickening Fluids (STFs) in Ballistic and Stab-Resistance Improvement of Flexible Armor. J. Mater. Eng. Perform. 2014, 23, 1182–1196. [Google Scholar] [CrossRef]
- Park, J.L.; Yoon, B.I.; Paik, J.G.; Kang, T.J. Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid; part I–effect of laminating sequence. Text. Res. J. 2012, 82, 527–541. [Google Scholar] [CrossRef]
- Park, J.L.; Yoon, B.I.; Paik, J.G.; Kang, T.J. Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid; Part II–Effect of fabric count and shot location. Text. Res. J. 2012, 82, 542–557. [Google Scholar] [CrossRef]
- Lee, Y.S.; Wagner, N.J. Dynamic properties of shear thickening colloidal suspensions. Rheol. Acta 2003, 42, 199–208. [Google Scholar] [CrossRef]
- Petel, O.E.; Ouellet, S.; Loiseau, J.; Frost, D.L.; Higgins, A.J. A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction. Int. J. Impact Eng. 2015, 85, 83–96. [Google Scholar] [CrossRef]
- Petel, O.E.; Ouellet, S.; Loiseau, J.; Marr, B.J.; Frost, D.L.; Higgins, A.J. The effect of particle strength on the ballistic resistance of shear thickening fluids. Appl. Phys. Lett. 2013, 102, 064103. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.W.; Kim, C.G. Computational analysis of shear thickening fluid impregnated fabrics subjected to ballistic impacts. Adv. Compos. Mater. 2012, 21, 177–192. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.K.; Feng, X.Y. The Ballistic Performance of Multi-Layer Kevlar Fabrics Impregnated with Shear Thickening Fluids. Appl. Mech. Mater. 2015, 782, 153–157. [Google Scholar] [CrossRef]
- Haro, E.E.; Odeshi, A.G.; Szpunar, J.A. The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact. Int. J. Impact Eng. 2016, 96, 11–22. [Google Scholar] [CrossRef]
- Haro, E.E.; Szpunar, J.A.; Odeshi, A.G. Ballistic impact response of laminated hybrid materials made of 5086-H32 aluminum alloy, epoxy and Kevlar® fabrics impregnated with shear thickening fluid. Compos. Part A Appl. Sci. Manuf. 2016, 87, 54–65. [Google Scholar] [CrossRef]
- Majumdar, A.; Butola, B.S.; Srivastava, A. Development of soft composite materials with improved impact resistance using Kevlar fabric and nano-silica based shear thickening fluid. Mater. Des. 2014, 54, 295–300. [Google Scholar] [CrossRef]
- Chu, T.L.; Ha-Minh, C.; Imad, A. Analysis of local and global localizations on the failure phenomenon of 3D interlock woven fabrics under ballistic impact. Compos. Struct. 2017, 159, 267–277. [Google Scholar] [CrossRef]
- Karahan, M.; Kuş, A.; Eren, R. An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics. Int. J. Impact Eng. 2008, 35, 499–510. [Google Scholar] [CrossRef]
- Laha, A.; Majumdar, A.; Biswas, I.; Verma, S.; Bhattacharjee, D. Role of fabric geometry in ballistic performance of flexible armour panels. Procedia Eng. 2017, 173, 747–754. [Google Scholar] [CrossRef]
- Park, Y.; Kim, Y.H.; Baluch, A.H.; Kim, C.G. Numerical simulation and empirical comparison of the high velocity impact of STF impregnated Kevlar fabric using friction effects. Compos. Struct. 2015, 125, 520–529. [Google Scholar] [CrossRef]
- Khodadadi, A.; Liaghat, G.; Sabet, A.; Hadavinia, H.; Aboutorabi, A.; Razmkhah, O.; Akbari, M.; Tahmasebi, M. Experimental and numerical analysis of penetration into Kevlar fabric impregnated with shear thickening fluid. J. Thermoplast. Compos. Mater. 2018, 31, 392–407. [Google Scholar] [CrossRef]
- Park, Y.; Kim, Y.; Baluch, A.H.; Kim, C.G. Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric. Int. J. Impact Eng. 2014, 72, 67–74. [Google Scholar] [CrossRef]
- Mirrahimi, A.H.; Hasanzadeh, M.; Mottaghitalab, V.; Sharma, P. Numerical Modelling of Ballistic Impact on HMPP Woven Fabric Impregnated with Shear-thickening Fluids. Procedia Eng. 2017, 173, 73–76. [Google Scholar] [CrossRef]
- Tan, Z.; Li, W.; Huang, W. The effect of graphene on the yarn pull-out force and ballistic performance of Kevlar fabrics impregnated with shear thickening fluids. Smart Mater. Struct. 2018, 27, 075048. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Wang, Y.; Cao, S.; Xuan, S.; Jiang, W.; Gong, X. Conductive shear thickening gel/Kevlar wearable fabrics: A flexible body armor with mechano-electric coupling ballistic performance. Compos. Sci. Technol. 2019, 182, 107782. [Google Scholar] [CrossRef]
- Abtew, M.A.; Boussu, F.; Bruniaux, P. Dynamic impact protective body armour: A comprehensive appraisal on panel engineering design and its prospective materials. Def. Technol. 2021, 17, 2027–2049. [Google Scholar] [CrossRef]
- Grover, G.; Verma, S.K.; Thakur, A.; Biswas, I.; Bhatacharjee, D. The effect of particle size and concentration on the ballistic resistance of different shear thickening fluids. Mater. Today Proc. 2020, 28, 1472–1476. [Google Scholar] [CrossRef]
- Bajya, M.; Majumdar, A.; Butola, B.S.; Verma, S.K.; Bhattacharjee, D. Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid. Compos. Part B Eng. 2020, 183, 107721. [Google Scholar] [CrossRef]
- Abtew, M.A.; Boussu, F.; Bruniaux, P.; Loghin, C.; Cristian, I. Ballistic impact mechanisms – A review on textiles and fibre-reinforced composites impact responses. Compos. Struct. 2019, 223, 110966. [Google Scholar] [CrossRef]
- Mawkhlieng, U.; Majumdar, A.; Bhattacharjee, D. Graphene Reinforced Multiphase Shear Thickening Fluid for Augmenting Low Velocity Ballistic Resistance. Fibers Polym. 2021, 22, 213–221. [Google Scholar] [CrossRef]
- Muneer Ahmed, M.; Dhakal, H.; Zhang, Z.; Barouni, A.; Zahari, R. Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review. Compos. Struct. 2021, 259, 113496. [Google Scholar] [CrossRef]
- Tirillò, J.; Ferrante, L.; Sarasini, F.; Lampani, L.; Barbero, E.; Sánchez-Sáez, S.; Valente, T.; Gaudenzi, P. High velocity impact behaviour of hybrid basalt-carbon/epoxy composites. Compos. Struct. 2017, 168, 305–312. [Google Scholar] [CrossRef]
- Bilisik, K. Impact-resistant fabrics (ballistic/stabbing/slashing/spike). Eng. -High-Perform. Text. 2018, 377–434. [Google Scholar] [CrossRef]
- Da Luz, F.S.; Junior, E.P.L.; Louro, L.H.L.; Monteiro, S.N. Ballistic Test of Multilayered Armor with Intermediate Epoxy Composite Reinforced with Jute Fabric. Mater. Res. 2015, 18, 170–177. [Google Scholar] [CrossRef]
- Wambua, P.; Vangrimde, B.; Lomov, S.; Verpoest, I. The response of natural fibre composites to ballistic impact by fragment simulating projectiles. Compos. Struct. 2007, 77, 232–240. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, S.; Liu, S.; Cao, S.; Wang, S.; Bai, L.; Sang, M.; Xuan, S.; Jiang, W.; Gong, X. CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance. Compos. Part A Appl. Sci. Manuf. 2019, 126. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Y.; Wu, J.; Song, S.; Cao, S.; Xuan, S.; Jiang, W.; Gong, X. Anti-impact response of Kevlar sandwich structure with silly putty core. Compos. Sci. Technol. 2017, 153, 168–177. [Google Scholar] [CrossRef]
- Sen, S.; Jamal M, N.B.; Shaw, A.; Deb, A. Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar composite. Int. J. Mech. Sci. 2019, 164, 105174. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Yan, R.; Qin, Z. Fluid-structure interaction simulation and evaluation of ballistic impact of STF impregnated UHMWPE fiber composites. Polym. Test. 2022, 115, 107757. [Google Scholar] [CrossRef]
- Gürgen, S. Numerical modeling of fabrics treated with multi-phase shear thickening fluids under high velocity impacts. Thin-Walled Struct. 2020, 148, 106573. [Google Scholar] [CrossRef]
- Nilakantan, G.; Merrill, R.L.; Keefe, M.; Gillespie, J.W.; Wetzel, E.D. Experimental investigation of the role of frictional yarn pull-out and windowing on the probabilistic impact response of kevlar fabrics. Compos. Part B Eng. 2015, 68, 215–229. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, F.; Wells, G. An analytical model for ballistic impact on textile based body armour. Compos. Part B Eng. 2013, 45, 1508–1514. [Google Scholar] [CrossRef]
- Kim, Y.; Kumar, S.K.S.; Park, Y.; Kwon, H.; Kim, C.G. High-velocity impact onto a high-frictional fabric treated with adhesive spray coating and shear thickening fluid impregnation. Compos. Part B Eng. 2020, 185, 107742. [Google Scholar] [CrossRef]
- Wei, M.; Lin, K.; Sun, L. Shear thickening fluids and their applications. Mater. Des. 2022, 216, 110570. [Google Scholar] [CrossRef]
- Kordani, N.; Vanini, A.S. Optimizing the ethanol content of shear thickening fluid/fabric composites under impact loading. J. Mech. Sci. Technol. 2014, 28, 663–667. [Google Scholar] [CrossRef]
- Lomakin, E.V.; Mossakovsky, P.A.; Bragov, A.M.; Lomunov, A.K.; Konstantinov, A.Y.; Kolotnikov, M.E.; Antonov, F.K.; Vakshtein, M.S. Investigation of impact resistance of multilayered woven composite barrier impregnated with the shear thickening fluid. Arch. Appl. Mech. 2011, 81, 2007–2020. [Google Scholar] [CrossRef]
- Zhang, G.M.; Batra, R.C.; Zheng, J. Effect of frame size, frame type, and clamping pressure on the ballistic performance of soft body armor. Compos. Part B Eng. 2008, 39, 476–489. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Z.; Liu, X.; Chen, W.; Zhao, Z.; Luo, G. Yarn dynamic tensile behavior and meso-scale numerical simulation method for STF-Kevlar fabrics. Thin-Walled Struct. 2021, 159, 107319. [Google Scholar] [CrossRef]
- Ghosh, A.; Majumdar, A.; Butola, B.S. Rheometry of novel shear thickening fluid and its application for improving the impact energy absorption of p-aramid fabric. Thin-Walled Struct. 2020, 155, 106954. [Google Scholar] [CrossRef]
- Lu, Z.; Wu, L.; Gu, B.; Sun, B. Numerical simulation of the impact behaviors of shear thickening fluid impregnated warp-knitted spacer fabric. Compos. Part B Eng. 2015, 69, 191–200. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Xue, S.; Sun, X. Multi-scale finite element modeling of ballistic impact onto woven fabric involving fiber bundles. Compos. Struct. 2021, 267, 113856. [Google Scholar] [CrossRef]
- Srivastava, A.; Majumdar, A.; Butola, B.S. Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid. Mater. Sci. Eng. A 2011, 529, 224–229. [Google Scholar] [CrossRef]
- Majumdar, A.; Butola, B.S.; Srivastava, A.; Bhattacharjee, D.; Biswas, I.; Laha, A.; Arora, S.; Ghosh, A. Improving the impact resistance of p-aramid fabrics by sequential impregnation with shear thickening fluid. Fibers Polym. 2016, 17, 199–204. [Google Scholar] [CrossRef]
- He, Q.; Cao, S.; Wang, Y.; Xuan, S.; Wang, P.; Gong, X. Impact resistance of shear thickening fluid/Kevlar composite treated with shear-stiffening gel. Compos. Part A Appl. Sci. Manuf. 2018, 106, 82–90. [Google Scholar] [CrossRef]
- Cao, S.; Chen, Q.; Wang, Y.; Xuan, S.; Jiang, W.; Gong, X. High strain-rate dynamic mechanical properties of Kevlar fabrics impregnated with shear thickening fluid. Compos. Part A Appl. Sci. Manuf. 2017, 100, 161–169. [Google Scholar] [CrossRef]
- Chu, Y.; Chen, X. Finite element modelling effects of inter-yarn friction on the single-layer high-performance fabrics subject to ballistic impact. Mech. Mater. 2018, 126, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Levinsky, A.A.; Sapozhnikov, S.B.; Grass, T.S. Development of knife- and bullet-impact-resistant Composite Structures. Mech. Compos. Mater. 2012, 48, 405–414. [Google Scholar] [CrossRef]
- Crineviciute, D.; Abraitiene, A.; Sankauskaite, A.; Tumeiene, D.M.; Lenkauskaite, L.; Barauskas, R. Influence of Chemical Surface Modification of Woven Fabrics on Ballistic and Stab Protection of Multilayer Packets. Mater. Sci. MedžIagotyra 2014, 20, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Olszewska, K.; Zielinska, D.; Struszczyk, M.H.; Wierzbicki, L.; Leonowicz, M.K. Thermal stability of the elastomeric anti-trauma pad. Pol. J. Chem. Technol. 2017, 19, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Eddine Tria, D.; Hemmouche, L.; Allal, A.; Benouali, A. Experimental and numerical analysis of high and low velocity impacts against neat and shear thickening fluid (STF) impregnated weave fabrics. EPJ Web Conf. 2018, 183, 1044. [Google Scholar] [CrossRef]
- Cho, H.; Lee, J.; Hong, S.; Kim, S. Bulletproof Performance of Composite Plate Fabricated Using Shear Thickening Fluid and Natural Fiber Paper. Appl. Sci. 2019, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Yeh, S.K.; Lin, J.J.; Zhuang, H.Y.; Chen, Y.C.; Chang, H.C.; Zheng, J.Y.; Yang, L.Y.; Lee, K.C.; Chen, Y.L.; Rwei, S.P. Light shear thickening fluid (STF)/Kevlar composites with improved ballistic impact strength. J. Polym. Res. 2019, 26, 1–13. [Google Scholar] [CrossRef]
- Yeh, S.; Zhuang, H.; Chen, Y.; Tseng, P.; Zheng, J.; Yang, L.; Lee, K.; Chen, Y. High-velocity impact performance of shear-thickening fluid/kevlar composites made by the padding process. Polym. Compos. 2019, 40, 3040–3049. [Google Scholar] [CrossRef]
- Chang, C.P.; Shih, C.H.; You, J.L.; Youh, M.J.; Liu, Y.M.; Ger, M.D. Preparation and Ballistic Performance of a Multi-Layer Armor System Composed of Kevlar/Polyurea Composites and Shear Thickening Fluid (STF)-Filled Paper Honeycomb Panels. Polymers 2021, 13, 3080. [Google Scholar] [CrossRef]
- Jeddi, M.; Yazdani, M.; Hasan-nezhad, H. Energy absorption characteristics of aluminum sandwich panels with Shear Thickening Fluid (STF) filled 3D fabric cores under dynamic loading conditions. Thin-Walled Struct. 2021, 168, 108254. [Google Scholar] [CrossRef]
- Katiyar, A.; Nandi, T.; Prasad, N.E. Impact behavior of aminosilane functionalized nanosilica based shear thickening fluid impregnated Kevlar fabrics. J. Appl. Polym. Sci. 2021, 138, 50862. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhou, J.; Zhao, C.; Wu, Y.; Liu, S.; Gong, X. Intralayer interfacial sliding effect on the anti-impact performance of STF/Kevlar composite fabric. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106401. [Google Scholar] [CrossRef]
- Bablu, M.A.; Manimala, J.M. Mechanisms of ballistic performance enhancement in silica nanoparticle-treated kevlar fabric. J. Compos. Mater. 2022, 56, 2253–2266. [Google Scholar] [CrossRef]
- Hasan-nezhad, H.; Yazdani, M.; Jeddi, M. High- and low-velocity impact experiments on treated STF/3D glass fabrics. Thin-Walled Struct. 2022, 171, 108720. [Google Scholar] [CrossRef]
- Kubit, A.; Trzepieciński, T.; Kiciński, R.; Jurczak, K. Three-Dimensional Smooth Particle Hydrodynamics Modeling and Experimental Analysis of the Ballistic Performance of Steel-Based FML Targets. Materials 2022, 15, 3711. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, V.; Harursampath, D.; Mahesh, V. An experimental study on ballistic impact response of jute reinforced polyethylene glycol and nano silica based shear thickening fluid composite. Def. Technol. 2022, 18, 401–409. [Google Scholar] [CrossRef]
- Zhihao, X.; Xiaodi, H.; Lulu, L.; Wei, C.; Zhenhua, Z.; Gang, L. Influences of a wide service-environment temperature range on the ballistic performance of STF-impregnated Kevlar. Compos. Struct. 2022, 287, 115330. [Google Scholar] [CrossRef]
- Bajya, M.; Majumdar, A.; Butola, B.S.; Jasra, R.V. Efficacy of various structural forms of disentangled polyethylene laminates against low velocity impact. J. Thermoplast. Compos. Mater. 2022, 1–22. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, J.; Liu, Y.; Peng, Z.; Li, X. Rheological characteristics analysis of shear thickening fluids based on response surface methodology. Mater. Res. Express 2022, 9, 25701. [Google Scholar] [CrossRef]
- Saleem, M.; Ali, A.; Shah, S.K.; Shuaib, M. Advanced Body Armor Utilizing Shear Thickening Fluid Based on Nanosized Silica Particles. Mater. Sci. Forum 2022, 1068, 121–128. [Google Scholar] [CrossRef]
- Mankarious, R.A.; Radwan, M.A.; Roushdy, M. Implementing Nanocomposite Shear Thickening Fluid to Improve The Impact Resistance of Polyamide Fabrics Against Intermediate Velocity Projectiles. J. Phys. Conf. Ser. 2022, 2305, 012041. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, K.; Wang, H.; Li, L.; Chen, H.; Gao, X.; Yan, R. Interfacial performance and impact resistance of argon plasma treated UHMWPE/STF inter-ply hybrid composites. J. Eng. Fibers Fabr. 2021, 16, 10–11. [Google Scholar] [CrossRef]
- Maharjan, R.; Mukhopadhyay, S.; Allen, B.; Storz, T.; Brown, E. Constitutive relation for the system-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Phys. Rev. E 2018, 97, 052602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraloglu Guler, E. Rheological behaviours of silica/water, silica/PEG systems and mechanical properties of shear thickening fluid impregnated Kevlar composites. Bull. Mater. Sci. 2018, 41, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.Z.; Zheng, H.; Wang, D.; Behringer, R.P. Discontinuous rate-stiffening in a granular composite modeled after cornstarch and water. Nat. Commun. 2019, 10, 1283. [Google Scholar] [CrossRef] [Green Version]
- Bischoff White, E.E.; Chellamuthu, M.; Rothstein, J.P. Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol. Acta 2010, 49, 119–129. [Google Scholar] [CrossRef]
- Nayak, P.; Ghosh, A.K.; Bhatnagar, N. Study of dynamic compressive responses of ultra-high molecular weight polyethylene felt impregnated with shear thickening fluid. Polym. Compos. 2021, 42, 6736–6748. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Li, X.; Deng, X.; Zhang, X.; Yan, Y.; Liu, Y.; Chen, X. Ballistic performance of UHMWPE fabrics/EAMS hybrid panel. J. Mater. Sci. 2018, 53, 7357–7371. [Google Scholar] [CrossRef]
- Tian, T.; Li, W.; Ding, J.; Alici, G.; Du, H. Study of shear-stiffened elastomers. Smart Mater. Struct. 2012, 21, 125009. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Young, R.; Kinloch, I.; Garry, W. An experimental study of the effect of ply orientation on ballistic impact performance of multi-ply fabric panels. Text. Res. J. 2016, 86, 34–43. [Google Scholar] [CrossRef]
- Golinelli, N.; Spaggiari, A.; Dragoni, E. Mechanical behaviour of magnetic Silly Putty: Viscoelastic and magnetorheological properties. J. Intell. Mater. Syst. Struct. 2017, 28, 953–960. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Fu, X.; Fu, Y. Effect of TW-ZnO/SiO2-compounded shear thickening fluid on the sound insulation property of glass fiber fabric. Text. Res. J. 2015, 85, 980–986. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, R.; Bisaria, H. Potential of jute fibre reinforced polymer composites: A review. Int. J. Fiber Text. Res. 2015, 5, 30–38. [Google Scholar]
- Ballistic Resistant Protective Materials; Nationa Institute of Justice: Washington, DC, USA, 1985.
- Reis, R.H.M.; Nunes, L.F.; da Luz, F.S.; Candido, V.S.; da Silva, A.C.R.; Monteiro, S.N. Ballistic performance of guaruman fiber composites in multilayered armor system and as single target. Polymers 2021, 13, 1203. [Google Scholar] [CrossRef]
- Kumar, S.; Das, E.K.; Ahuja, P.; Babu, R.G. Ballistic efficiency of Corchorus fiber and aramid reinforced epoxy composite for armor material application. Mater. Today Proc. 2022, 57, 65–71. [Google Scholar] [CrossRef]
- Sergi, C.; Sarasini, F.; Russo, P.; Vitiello, L.; Barbero, E.; Sanchez-Saez, S.; Tirillò, J. Experimental and numerical analysis of the ballistic response of agglomerated cork and its bio-based sandwich structures. Eng. Fail. Anal. 2022, 131, 105904. [Google Scholar] [CrossRef]
- Ribeiro, M.P.; de Mendonça Neuba, L.; da Silveira, P.H.P.M.; da Luz, F.S.; da Silva Figueiredo, A.B.H.; Monteiro, S.N.; Moreira, M.O. Mechanical, thermal and ballistic performance of epoxy composites reinforced with Cannabis sativa hemp fabric. J. Mater. Res. Technol. 2021, 12, 221–233. [Google Scholar] [CrossRef]
- Ali, A.; Adawiyah, R.; Rassiah, K.; Ng, W.K.; Arifin, F.; Othman, F.; Hazin, M.S.; Faidzi, M.; Abdullah, M.; Megat Ahmad, M. Ballistic impact properties of woven bamboo- woven E-glass- unsaturated polyester hybrid composites. Def. Technol. 2019, 15, 282–294. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Luz, F.S.d.; Lopera, H.A.C.; Nascimento, L.F.C.; Garcia Filho, F.d.C.; Monteiro, S.N. Energy absorption and limit velocity of epoxy composites incorporated with fique fabric as ballistic armor—A brief report. Polymers 2021, 13, 2727. [Google Scholar] [CrossRef]
- Lilargem Rocha, D.; Tambara Júnior, L.U.D.; Marvila, M.T.; Pereira, E.C.; Souza, D.; de Azevedo, A.R.G. A Review of the Use of Natural Fibers in Cement Composites: Concepts, Applications and Brazilian History. Polymers 2022, 14, 2043. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Kumar, P.K.; Kumar, B.N. Improvement of impact strength of novel intra-ply basalt/kevlar composite by addition of silica nanoparticles in comparison with basalt/kevlar composite using resin transfer mould process. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Sun, L.; Wei, M.; Zhu, J. Low velocity impact performance of fiber-reinforced polymer impregnated with shear thickening fluid. Polym. Test. 2021, 96, 107095. [Google Scholar] [CrossRef]
- Gürgen, S.; Kuşhan, M.C. Improvement of spall liner performance with smart fluid applications. Thin-Walled Struct. 2022, 180, 109854. [Google Scholar] [CrossRef]
- Toksoy, A.K.; Arıkan, V.; Karakuzu, R.; Arman, Y.; Gören, A. Experimental study on spall behavior of single and multi-plate composites behind armor subjected to shaped charge. J. Compos. Mater. 2020, 54, 3491–3499. [Google Scholar] [CrossRef]
- Yahaya, R.; Sapuan, S.; Jawaid, M.; Leman, Z.; Zainudin, E. Quasi-static penetration and ballistic properties of kenaf–aramid hybrid composites. Mater. Des. 2014, 63, 775–782. [Google Scholar] [CrossRef]
- Xu, W.; Yan, B.; Hu, D.; Ma, P. Preparation of auxetic warp-knitted spacer fabric impregnated with shear thickening fluid for low-velocity impact resistance. J. Ind. Text. 2020, 51, 7188S–7204S. [Google Scholar] [CrossRef]
- Pais, V.; Silva, P.; Bessa, J.; Dias, H.; Duarte, M.H.; Cunha, F.; Fangueiro, R. Low-Velocity Impact Response of Auxetic Seamless Knits Combined with Non-Newtonian Fluids. Polymers 2022, 14, 2065. [Google Scholar] [CrossRef]
- Yang, S.; Qi, C.; Wang, D.; Gao, R.; Hu, H.; Shu, J. A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores. Adv. Mech. Eng. 2013, 5, 589216. [Google Scholar] [CrossRef]
Armor Type | Test Bullets | Bullet Mass (g) | Armour Test Velocity (m·s−1) |
---|---|---|---|
IIA | 9 mm FMJ RN 0.40 S & W FMJ RN | 8.0 11.7 | 373 352 |
II | 9 mm FMJ RN 0.357 Magnum JSP | 8.0 10.0 | 398 436 |
IIIA | 0.357 SIG FMJ FN 0.44 Magnum SJHP | 8.1 15.6 | 448 436 |
III | 7.62 mm NATO FMJ | 9.6 | 847 |
IV | 0.30 Calibre M2 AP | 10.8 | 878 |
Theory | Explanation | Reference |
---|---|---|
Order–Disorder | The repulsive forces between particles keep them separated and ordered in layers. The external force can exceed this interaction and cause a disorder in the structure, which increases the viscosity of the material | [49] |
Hydrocluster Formation | The thickening occurs due to the formation of clusters from the fluid force, which complicates the flow of the dispersion liquid and increases the viscosity of the material | [50] |
Contact Rheology Model | Takes into account both the lubrication forces and solid friction among particles, the latter considered a dominating force. The result of this model allows predicting the abrupt increase in the shear thickening behavior. | [2] |
Phase | Factor | Description | Reference |
---|---|---|---|
Particle | Fraction | The increase in particle concentration (in wt. %) increases the viscosity of the STF. In the case of nanoparticles, the increase in concentration causes an increase in hydrodynamic forces due to the reduction in the distance between the particles, increasing the number of hydroclusters at small shear rates. | [39,49,50,66,67] |
Aspect ratio | Particles with high aspect ratios are more propitious to increase particle interlocking and rotational movements in the flow. They have a greater possibility of contact with nearby particles, triggering STF thickening more effectively. | [47,68,69,70] | |
Size | Smaller particles increase the viscosity of mixtures due to the increased number of particles per unit volume in finer particle dispersions, resulting in a higher interparticle bond density. The study of Brownian forces should be considered in the investigation of this trend since they dominate nano-sized suspensions and retard thickening for higher shear rates because of enhanced repulsive stresses between the particles. | [46,71,72,73] | |
Particle–particle interactions | During shear thickening behavior, the particles may remain neutral and repel each other due to entropic or stereoscopic interactions. Deflocculated suspensions have low viscosity at low thickening rates. The flocculated suspensions, on the other hand, have high viscosity at low shear rates. | [47,70] | |
Hardness | Harder particles are suggested for the development of STFs as they lead to a better shear thickening mechanism due to their enhanced mechanical properties. In the interaction of the particles, the ones with low hardness cannot support the increased stresses, resulting in a drop in viscosity. | [74,75] | |
Liquid Medium | Molecular Weight | Higher molecular weight fluids used in STFs exhibit higher viscosity in lower shear rates due to longer molecular chains, which makes it difficult for adjacent layers of fluid to move closer to each other. Thickening is accomplished by increased adsorption of polymers on the surface of the particles due to polar interactions between silanol groups present on the silica particles with long polymer chains, increasing adsorption. | [76,77,78] |
Temperature | The viscosity of suspensions decreases with increasing temperature. The reduction occurs due to reduced hydrogen bond strength. In addition, Brownian motion is enhanced, disordering the thick structure and delaying the critical shear rate to higher values. | [50,66] |
Factors | Description | Reference |
---|---|---|
Fiber type | Low density, high tensile strength, and modulus are important criteria for high-velocity impact strength and soft armor application. They are related to high crystalline orientation, long molecular chain length, and strong chemical bonds, which lead to improved performance. Tabiei states that the higher the modulus and the lower the density, the faster the stress will propagate through the fabric, leading to an increase in energy dissipation. | [2,88] |
Areal Density | A fabric with a low number of yarns per unit dimension may present a lower impact energy absorption due to yarn sliding, causing the “wedge through”. On the other hand, high areal density affects the final weight and may raise yarn stress concentration, which induces a fiber break. A moderate grammage (between 0.65 and 0.95) maximizes the area activated under the impact, which increases the ballistic energy absorption. | [89] |
Weave Patterns and Crimp | Weave patterns used in ballistic applications are usually plain and basket weaves. Although, plain-woven fabrics present higher undulation, resulting in a superior abrasion and energy dissipation, called yarn crimps. | [88] |
Number and Orientation of Layers | Energy absorption increase with multiple layers. Friction between the plies inhibits the motion of the yarns, resulting in a higher impact strength. Furthermore, the effect of bullet geometry decreases as the number of plies increases. | [90,91] |
Author | Year | Reference | Cited Works |
---|---|---|---|
Thilagavathi et al. | 2008 | [110] | [35,69,111] |
Srivastava et al. | 2012 | [70] | [35,69,70,72,74,94,112] |
Ding et al. | 2013 | [113] | [35,114] |
Hasanzadeh et al. | 2014 | [115] | [35,69,72,116,117] |
Bilisik | 2017 | [79] | [35,70,94,118] |
Gürgen et al. | 2017 | [46] | [35,41,69,72,82,115,117,119,120,121,122,123,124] |
Mawkhlieng and Majumdar | 2019 | [2] | [34,35,46,69,74,82,94,104,116,117,124,125,126,127,128,129,130,130,104] |
Mawkhlieng et al. | 2020 | [15] | [23,35,69,70,72,104,115,117,125,131] |
Weerasinghe et al. | 2020 | [108] | [35,38,39,41,69,72,84,100,119,120,121,132,133] |
Zarei and Aalaie | 2020 | [45] | [35,38,40,41,69,72,83,119,123,133,134] |
Abtew et al. | 2021 | [135] | [35,37,38,39,41,72,115,117,121,123,136,117,38,121] |
Czech et al. | 2021 | [80] | [79,100,123,134,136,137,138] |
Khodadadi et al. | 2021 | [42] | [26,35,38,39,41,79,83,84,88,100,119,121,122,123,137,138,139] |
Muneer-Ahmed et al. | 2021 | [140] | [35,37,69,84,108,121,141,142,143,144,144] |
Zhang et al. | 2021 | [43] | [37,38,39,40,41,82,83,89,100,109,116,123,124,129,145,146,147,148,149,150,151,152] |
Wei et al. | 2022 | [153] | [36,38,39,72,94,100,104,116,117,121,125,133,134,137,149,152,154,155,156] |
Zhang et al. | 2022 | [44] | [23,26,35,41,44,46,84,100,108,117,119,125,129,132,147,149,157,158,159,160,161,162,163,164,165] |
Authors | Panel | Particle | Liquid Medium | Content |
---|---|---|---|---|
Levinsky et al. [166] | Aramid | Al2O3 | PVAc | 3 wt% |
Grineviciute et al. [167] | Aramid | H4SiO4 Acrylic | Water | 5 wt% |
Haro et al. [124] | Aramid + Al plates | SiO2 | PEG 400 | 50 wt% |
Olszewska et al. [168] | UHMWPE | SiO2 | PPG 400 | 25 wt% |
Tria et al. [169] | Aramid | SiO2 | PEG | - |
Cho et al. [170] | Hanji Paper | Cornstarch | Water | 55 wt% |
Yeh et al. [171] | Aramid | SiO2 | PEG 200 | 20, 30, 40, and 50 wt% |
Yeh et al. [172] | Aramid | SiO2 | PEG 200 | 40 wt% |
Liu et al. [109] | Aramid | SiO2 GO CNT | PEG 200 | 20 wt% |
Chang et al. [173] | Aramid | SiO2 | PEG 200 | 40 wt% |
Jeddi et al. [174] | E-glass + Al plate | SiO2 | PEG 400 | 20 wt% |
Katiyar et al. [175] | Aramid | SiO2 | PEG 400 | 25 wt% |
Zhang et al. [176] | Aramid | SiO2 | PEG 200 | 0, and 70 wt% |
Bablu and Naminala [177] | Aramid | SiO2 | Water | 0, 10, 30, and 40 wt% |
Hasan-Nezhad et al. [178] | E-Glass | SiO2 | PEG 400 | 30, 40, 50, and 60 wt% |
Kubit et al. [179] | Aramid + Steel plate | SiO2 | EG | 5 wt% |
Mahesh et al. [180] | Jute Fabric | SiO2 | PEG | 10, 20, 30, and 40 wt% |
Mishra et al. [81] | UHMWPE | SiO2 | PEG 400 | 40 wt% |
Tang [18] | UHMWPE | - | H3BO3 + PDMS-OH (SSG) | - |
Xu et al. [24] | Aramid | SiO2 B4C | PEG 200 | SiO2 – 0, and 25 wt% B4C – 0, 5, 10, and 15 wt% |
Zhihao et al. [181] | Aramid | SiO2 | PEG 200 | 20 wt% |
Zhang et al. [148] | UHMWPE | SiO2 | PEG 600 | 50 wt% |
Bajya et al. [182] | UHMWPE | SiO2 | PEG 200 | 65 wt% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, M.P.; da Silveira, P.H.P.M.; de Oliveira Braga, F.; Monteiro, S.N. Fabric Impregnation with Shear Thickening Fluid for Ballistic Armor Polymer Composites: An Updated Overview. Polymers 2022, 14, 4357. https://doi.org/10.3390/polym14204357
Ribeiro MP, da Silveira PHPM, de Oliveira Braga F, Monteiro SN. Fabric Impregnation with Shear Thickening Fluid for Ballistic Armor Polymer Composites: An Updated Overview. Polymers. 2022; 14(20):4357. https://doi.org/10.3390/polym14204357
Chicago/Turabian StyleRibeiro, Matheus Pereira, Pedro Henrique Poubel Mendonça da Silveira, Fábio de Oliveira Braga, and Sergio Neves Monteiro. 2022. "Fabric Impregnation with Shear Thickening Fluid for Ballistic Armor Polymer Composites: An Updated Overview" Polymers 14, no. 20: 4357. https://doi.org/10.3390/polym14204357
APA StyleRibeiro, M. P., da Silveira, P. H. P. M., de Oliveira Braga, F., & Monteiro, S. N. (2022). Fabric Impregnation with Shear Thickening Fluid for Ballistic Armor Polymer Composites: An Updated Overview. Polymers, 14(20), 4357. https://doi.org/10.3390/polym14204357