Characterization and Prediction of Physical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Vacuum Hydrothermal Treatment of Luanta Fir Wood
2.3. Measurement of Mass Loss
2.4. Determination of Physical Properties
2.5. Measurement of Surface Colour
2.6. Measurement of Surface Contact Angle
2.7. NIR Spectral Measurements
2.8. Establishing Prediction Model for Wood Properties
2.9. Statistical Analysis
3. Results and Discussion
3.1. ML and Air-Dry Density
3.2. Hygroscopicity and Water Absorption
3.3. Surface Contact Angle
3.4. Surface Colour Change
3.5. NIRS Analysis
3.6. Establishing the Prediction Model
3.7. Model Prediction Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.L.; Kocaefe, D.; Amburgey, T.; Zhang, J. A compartive study on brown-rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treated wood. Holz Roh Werkst. 2007, 65, 353–358. [Google Scholar] [CrossRef]
- Antonios, N.P.; Georgia, P. Mechanical behavior of pine wood chemically modified with a homologous series of linear chain carboxylic acid anhydrides. Bioresour. Technol. 2010, 101, 6147–6150. [Google Scholar] [CrossRef]
- Mazela, B.; Zakrzewski, R.; Grześkowiak, W.; Cofta, G.; Bartkowiak, M. Resistance of thermally modified wood to basidiomycetes. Electron. J. Pol. Agric. Univ. 2004, 7, 253–262. [Google Scholar]
- Kocaefe, D.; Shi, J.L.; Yang, D.Q.; Bouzara, M. Mechanical properties, dimensional stability, and mold resistance of heat-treated jack pine and aspen. Forest Prod. J. 2008, 58, 88–93. [Google Scholar]
- Wentzel, M.; Rolleri, A.; Pesenti, H.; Militz, H. Chemical analysis and cellulose crystallinity of thermally modified Eucalyptus nitens wood from open and closed reactor systems using FTIR and X-ray crystallography. Eur. J. Wood Wood Prod. 2019, 77, 517–525. [Google Scholar] [CrossRef]
- Fujino, T.; Moreno, J.M.C.; Swamy, S.; Hirose, T.; Yoshimura, M. Phase and structural change of carbonized wood materials by hydrothermal treatment. Solid State Ion. 2002, 151, 197–203. [Google Scholar] [CrossRef]
- Tarabanko, N.; Baryshnikov, S.V.; Kazachenko, A.S.; Miroshnikova, A.V.; Skripnikov, A.M.; Lavrenov, A.V.; Taran, O.P.; Kuznetsov, B.N. Hydrothermal hydrolysis of microcrystalline cellulose from birch wood catalyzed by Al2O3-B2O3 mixed oxides. Wood Sci. Technol. 2022, 56, 437–457. [Google Scholar] [CrossRef]
- Cheng, S.S.; Lin, C.Y.; Chang, S.T. Antitermitic and antifungal activities of wood essential oils from five indigenous conifers in Taiwan. Quart. J. Exp. Forest 2019, 33, 231–246. [Google Scholar] [CrossRef]
- Kocaefe, D.; Poncsak, S.; Tang, J.; Bouazara, M. Effect of heat treatment on the mechanical properties of North American jack pine: Thermogravimetric study. J. Mater. Sci. 2010, 45, 681–687. [Google Scholar] [CrossRef]
- Altgen, M.; Willems, W.; Militz, H. Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system. Eur. J. Wood Wood Prod. 2016, 74, 653–662. [Google Scholar] [CrossRef]
- Mitsui, K.; Inagaki, T.; Tsuchikawa, S. Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy. Biomacromolecules 2008, 9, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ferrari, C.; Angiuli, M.; Yao, J.; Raspi, C.; Bramanti, E. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr. Polym. 2010, 82, 772–778. [Google Scholar] [CrossRef]
- Méndez-Mejías, L.D.; Moya, R. Effects on air-dried density, shrinking, color changing and chemical surface analysis through FTIR of Tectona grandis thermo-treated. Sci. For. 2016, 44, 811–820. [Google Scholar] [CrossRef]
- Obataya, E.; Higashihara, T.; Tomita, B. Hygroscopicity of heat treated wood III. Effect of steaming on the hygroscopicity of wood. Mokuzai Gakkaishi 2002, 48, 348–355. [Google Scholar]
- Zeniya, N.; Endo-Ujiie, K.; Obataya, E.; Nakagawa-Izumi, A.; Matsuo-Ueda, M. Effects of water-soluble extractives on the vibrational properties and color of hygrothermally treated spruce wood. Wood Sci. Technol. 2019, 53, 151–164. [Google Scholar] [CrossRef]
- CNS 451; Wood—Determination of Density for Physical and Mechanical Tests. Bureau of Standards, Metrology and Inspection: Taipei, Taiwan, 2013.
- CNS 452; Wood—Determination of Moisture Content for Physical and Mechanical Tests. Bureau of Standards, Metrology and Inspection: Taipei, Taiwan, 2013.
- CNS 14927; Wood—Determination of Volumetric Swelling. Bureau of Standards, Metrology and Inspection: Taipei, Taiwan, 2012.
- Winandy, J.E.; Lebow, P.K. Modeling wood strength as a function of chemical composition: An individual effects model. Wood Fiber Sci. 2001, 33, 239–254. [Google Scholar]
- Esteves, B.M.; Graça, J.; Pereira, H.M. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 2008, 62, 344–351. [Google Scholar] [CrossRef]
- Altgen, M.; Militz, H. Influence of process conditions on hygroscopicity and mechanical properties of European beech thermally modified in a high-pressure reactor system. Holzforschung 2016, 70, 971–979. [Google Scholar] [CrossRef]
- Esteves, B.M.; Pereira, H. Wood modification by heat treatment: A review. Bioresources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Yin, Y.; Bian, M.; Song, K.; Xiao, F.; Xiaomei, J. Influence of microfibril angle on within-tree variations in the mechanical properties of Chinese fir (Cunninghamia lanceolata). IAWA J. 2011, 32, 431–442. [Google Scholar] [CrossRef]
- Altgen, M.; Uimonen, T.; Rautkari, L. The effect of de- and re-polymerization during heat-treatment on the mechanical behavior of Scots pine sapwood under quasi-static load. Polym. Degrad. Stabil. 2018, 147, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Candan, Z.; Büyüksarı, U.; Korkut, S.; Unsal, O.; Çakıcıer, N. Wettability and surface roughness of thermally modification modified plywood panels. Ind. Crop. Prod. 2012, 36, 434–436. [Google Scholar] [CrossRef]
- Christiansen, A.W. Effect of overdrying of yellow-poplar veneer on physical properties and bonding. Holz Roh Werkst. 1994, 52, 139–149. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, B.; Liu, J. Effect of thermo-vacuum treatment on the color and chemistry of larch wood. Bioresources 2016, 11, 2349–2360. [Google Scholar] [CrossRef]
- Sundqvist, B.; Moren, T. The influence of wood polymers and extractives on wood color induced by hydrothermal treatment. Holz Roh Werkst. 2002, 60, 375–376. [Google Scholar] [CrossRef]
- Sehlstedt-Persson, M. Color Responses to Heat Treatment of Extractives and Sap from Pine and Spruce. In Proceedings of the 8th International IUFRO Wood Drying Conference, Brasov, Romania, 24–29 August 2003; pp. 459–464. [Google Scholar]
- Sandoval-Torres, S.; Jomaa, W.; Marc, F.; Puiggali, J.R. Colour alteration and chemistry changes in oak wood (Quercus pedunculata Ehrh) during plain vacuum drying. Wood Sci. Technol. 2012, 46, 177–191. [Google Scholar] [CrossRef]
- Cademartori, P.H.G.; dos Santos, P.S.; Serrano, L.; Labidi, J.; Gatto, D.A. Effect of thermal treatment on physicochemical properties of Gympie messmate wood. Ind. Crop. Prod. 2013, 45, 360–366. [Google Scholar] [CrossRef]
- Bekhta, P.; Proszyk, S.; Krystofiak, T. Colour in short-term thermo-mechanically densified veneer of various wood species. Eur. J. Wood Wood Prod. 2014, 72, 785–797. [Google Scholar] [CrossRef]
- Popescu, C.M.; Navi, P.; Peña, M.I.P.; Popescu, M.C. Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis. Spectrochim. Acta A 2018, 191, 405–412. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, C.; Luo, B.; Chen, T.; Lu, J. Characterization of wood surface elemental compositions after thermo-vacuum treatment and superheated-steam heat treatment. BioResources 2018, 13, 1895–1908. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Liang, Y.; Zhang, Y.; Cao, J. Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-squares. J. For. Res. 2020, 31, 1053–1060. [Google Scholar] [CrossRef] [Green Version]
- Mitic, A.; Cervera-Padrell, A.E.; Mortensen, A.R.; Skovby, T.; Dam-Johansen, K.; Javakhishvili, I.; Hvilsted, S.; Gernaey, K.V. Implementation of near-infrared spectroscopy for in-line monitoring of a dehydration reaction in a tubular laminar reactor. Org. Process Res. Dev. 2016, 20, 395–402. [Google Scholar] [CrossRef]
- Urbano-Cuadrado, M.; De Castro, M.L.; Pérez-Juan, P.M.; García-Olmo, J.; Gómez-Nieto, M.A. Near infrared reflectance spectroscopy and multivariate analysis in enology: Determination or screening of fifteen parameters in different types of wines. Anal. Chim. Acta 2004, 527, 81–88. [Google Scholar] [CrossRef]
- Hsu, H.; McNeil, A.; Okine, E.; Mathison, G.; Soofi-Siawash, R. Near infrared spectroscopy for measuring in situ degradability in barley forages. J. Near Infrared Spectrosc. 1998, 6, 129–143. [Google Scholar] [CrossRef]
- Chen, C.S.; Wang, S.M. Calibration equations for determining nutritional components of forage corn in near-infrared spectroscopy analysis. J. Taiwan Livest. Res. 2008, 41, 319–327. [Google Scholar]
- Todorović, N.; Popović, Z.; Milić, G. Estimation of quality of thermally modified beech wood with red heartwood by FT-NIR spectroscopy. Wood Sci. Technol. 2015, 49, 527–549. [Google Scholar] [CrossRef]
Sample | ML (%) | Air-Dry Density (kg/m3) | EMC (%) | MEE (%) | S (%) | ASE (%) | Contact Angle (°) |
---|---|---|---|---|---|---|---|
Control | - | 416 ± 53 a | 8.3 ± 0.3 a | - | 13 ± 2 a | - | 60 ± 9 e |
160 °C/4 h | 1.7 ± 1.4 i | 405 ± 47 ab,ns | 7.9 ± 0.4 ab,* | 5 ± 4 i | 12 ± 2 ab,* | 12 ± 16 e | 60 ± 14 e,ns |
160 °C/8 h | 2.8 ± 0.7 ghi | 394 ± 41 ab,ns | 7.8 ± 0.4 ab,** | 6 ± 5 i | 9 ± 1 bc,*** | 30 ± 6 de | 74 ± 21 bcde,* |
160 °C/16 h | 3.9 ± 0.7 fgh | 374 ± 34 ab,* | 7.3 ± 0.4 bcd,*** | 12 ± 5 ghi | 8 ± 1 cdef,*** | 38 ± 10 bcd | 77 ± 15 abcde,* |
180 °C/4 h | 2.4 ± 0.7 hi | 409 ± 36 ab,ns | 7.9 ± 0.6 ab,* | 5 ± 7 i | 8 ± 1 cde,*** | 37 ± 9 bcd | 71 ± 14 de,* |
180 °C/8 h | 3.3 ± 0.6 fghi | 389 ± 42 ab,ns | 7.4 ± 0.4 b,*** | 11 ± 5 i | 7 ± 1 cdefg,*** | 48 ± 8 abcd | 77 ± 12 abcde,** |
180 °C/16 h | 4.7 ± 0.8 ef | 354 ± 37 abc,** | 6.5 ± 0.7 de,*** | 22 ± 9 fg | 7 ± 1 cdefg,*** | 45 ± 10 abcd | 97 ± 13 abcd,*** |
200 °C/4 h | 4.3 ± 1.3 fg | 389 ± 49 ab,ns | 7.4 ± 0.4 bc,*** | 12 ± 5 hi | 9 ± 2 bcd,*** | 33 ± 19 cde | 72 ± 23 cde,ns |
200 °C/8 h | 4.7 ± 0.6 ef | 394 ± 56 ab,ns | 6.5 ± 0.2 def,*** | 22 ± 3 ef | 7 ± 1 cdefg,*** | 49 ± 7 abcd | 95 ± 12 abcd,*** |
200 °C/16 h | 6.4 ± 0.5 de | 370 ± 52 ab,* | 5.6 ± 0.8 gh,*** | 33 ± 9 cd | 6 ± 1 defg,*** | 53 ± 10 abc | 104 ± 12 a,*** |
220 °C/4 h | 4.9 ± 1.1 def | 414 ± 81 a,ns | 6.6 ± 0.4 cde,*** | 21 ± 5 fgh | 7 ± 1 cdefg,*** | 47 ± 9 abcd | 91 ± 13 abcd,*** |
220 °C/8 h | 6.6 ± 0.8 d | 367 ± 52 ab,* | 5.7 ± 0.3 fg,*** | 32 ± 4 de | 6 ± 2 efg,*** | 56 ± 12 ab | 99 ± 18 abc,*** |
220 °C/16 h | 9.6 ± 1.4 c | 358 ± 47 abc,* | 4.8 ± 0.2 hi,*** | 43 ± 3 bc | 5 ± 1 fg,*** | 59 ± 11 a | 100 ± 22 ab,*** |
240 °C/4 h | 6.1 ± 1.1 de | 367 ± 37 ab,* | 5.9 ± 0.5 efg,*** | 30 ± 6 def | 7 ± 2 cdefg,*** | 43 ± 12 abcd | 99 ± 17 abc,*** |
240 °C/8 h | 18.0 ± 1.3 b | 322 ± 41 bc,*** | 4.1 ± 0.2 ij,*** | 51 ± 3 ab | 5 ± 2 g,*** | 63 ± 13 a | 97 ± 10 abcd,*** |
240 °C/16 h | 31.2 ± 1.2 a | 275 ± 32 c,*** | 3.7 ± 0.3 j,*** | 56 ± 4 a | 7 ± 2 cdefg,*** | 45 ± 14 abcd | 96 ± 8 abcd,*** |
Properties | Calibration Data | Prediction Data | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | N | Min | Max | Mean | N | |
Air-dry density (kg/m3) | 223 | 579 | 374 | 192 | 255 | 526 | 379 | 48 |
ML (%) | 0.3 | 34.0 | 7.2 | 180 | 0.5 | 31.9 | 7.4 | 45 |
EMC (%) | 0.9 | 13.2 | 8.3 | 192 | 1.2 | 12.9 | 7.9 | 48 |
S (%) | 2.9 | 18.6 | 7.7 | 192 | 3.2 | 14.2 | 8.0 | 48 |
Contact angle (°) | 29 | 121 | 85 | 192 | 53 | 119 | 86 | 48 |
ΔE* | 2 | 54 | 15 | 180 | 2 | 51 | 15 | 45 |
Properties | Preprocessing Method | LVs | R2 | RMSEC |
---|---|---|---|---|
Air-dry density | Original spectra | 10 | 0.394 | 46.57 |
MSC | 10 | 0.386 | 46.88 | |
SNV | 10 | 0.408 | 46.02 | |
MSC + baseline correction | 10 | 0.395 | 46.52 | |
1stDer | 10 | 0.755 | 31.13 | |
1stDer + SG | 10 | 0.800 | 26.77 | |
2ndDer | 10 | 0.892 | 20.81 | |
2ndDer + SG | 10 | 0.935 | 15.07 | |
ML | Original spectra | 10 | 0.943 | 1.80 |
MSC | 10 | 0.963 | 1.45 | |
SNV | 10 | 0.964 | 1.43 | |
MSC + baseline correction | 10 | 0.963 | 1.45 | |
1stDer | 10 | 0.986 | 0.90 | |
1stDer + SG | 10 | 0.982 | 1.01 | |
2ndDer | 10 | 0.959 | 0.26 | |
2ndDer + SG | 10 | 0.998 | 0.38 | |
EMC | Original spectra | 10 | 0.879 | 0.51 |
MSC | 10 | 0.888 | 0.50 | |
SNV | 10 | 0.893 | 0.48 | |
MSC + baseline correction | 10 | 0.887 | 0.50 | |
1stDer | 10 | 0.948 | 0.34 | |
1stDer + SG | 10 | 0.936 | 0.37 | |
2ndDer | 10 | 0.939 | 0.37 | |
2ndDer + SG | 10 | 0.988 | 0.16 | |
S | Original spectra | 10 | 0.621 | 1.64 |
MSC | 10 | 0.598 | 1.69 | |
SNV | 10 | 0.626 | 1.63 | |
MSC + baseline correction | 10 | 0.604 | 1.67 | |
1stDer | 10 | 0.872 | 0.95 | |
1stDer + SG | 10 | 0.811 | 1.16 | |
2ndDer | 10 | 0.805 | 1.17 | |
2ndDer + SG | 10 | 0.952 | 0.55 | |
Contact angle | Original spectra | 10 | 0.513 | 14.68 |
MSC | 10 | 0.481 | 15.14 | |
SNV | 10 | 0.521 | 14.56 | |
MSC + baseline correction | 10 | 0.487 | 15.06 | |
1stDer | 10 | 0.793 | 9.58 | |
1stDer + SG | 10 | 0.715 | 11.23 | |
2ndDer | 10 | 0.715 | 11.22 | |
2ndDer + SG | 10 | 0.943 | 5.02 | |
ΔE* | Original spectra | 10 | 0.948 | 3.02 |
MSC | 10 | 0.952 | 2.88 | |
SNV | 10 | 0.958 | 2.69 | |
MSC + baseline correction | 10 | 0.952 | 2.88 | |
1stDer | 10 | 0.979 | 1.91 | |
1stDer + SG | 10 | 0.972 | 2.22 | |
2ndDer | 10 | 0.948 | 0.56 | |
2ndDer + SG | 10 | 0.996 | 0.83 |
Properties | LVs | R2 | RMSEC | RMSECV | Difference (%) |
---|---|---|---|---|---|
Air-dry density | 1 | 0.220 | 50.96 | 51.18 | 0 |
2 | 0.295 | 48.71 | 49.15 | 1 | |
3 | 0.377 | 46.09 | 51.55 | 12 | |
4 | 0.395 | 45.87 | 51.54 | 12 | |
5 | 0.522 | 40.84 | 52.80 | 29 | |
6 | 0.588 | 39.20 | 51.72 | 32 | |
7 | 0.713 | 33.75 | 52.19 | 55 | |
8 | 0.823 | 25.69 | 51.05 | 99 | |
9 | 0.883 | 20.82 | 51.30 | 146 | |
10 | 0.935 | 15.94 | 51.09 | 221 | |
ML | 1 | 0.781 | 3.56 | 3.58 | 1 |
2 | 0.949 | 1.75 | 1.76 | 0 | |
3 | 0.954 | 1.70 | 1.73 | 2 | |
4 | 0.963 | 1.57 | 1.63 | 4 | |
5 | 0.967 | 1.48 | 1.66 | 13 | |
6 | 0.981 | 1.16 | 1.55 | 34 | |
7 | 0.988 | 0.90 | 1.48 | 65 | |
8 | 0.992 | 0.70 | 1.39 | 99 | |
9 | 0.996 | 0.54 | 1.37 | 155 | |
10 | 0.998 | 0.39 | 1.43 | 265 | |
EMC | 1 | 0.529 | 0.99 | 1.00 | 1 |
2 | 0.848 | 0.57 | 0.57 | 1 | |
3 | 0.858 | 0.55 | 0.56 | 2 | |
4 | 0.870 | 0.53 | 0.55 | 3 | |
5 | 0.905 | 0.46 | 0.52 | 15 | |
6 | 0.927 | 0.40 | 0.52 | 29 | |
7 | 0.951 | 0.34 | 0.55 | 65 | |
8 | 0.964 | 0.30 | 0.54 | 83 | |
9 | 0.977 | 0.23 | 0.54 | 138 | |
10 | 0.988 | 0.17 | 0.54 | 220 | |
S | 1 | 0.297 | 2.08 | 2.10 | 1 |
2 | 0.489 | 1.78 | 1.80 | 1 | |
3 | 0.510 | 1.75 | 1.78 | 2 | |
4 | 0.570 | 1.66 | 1.74 | 5 | |
5 | 0.676 | 1.44 | 1.67 | 16 | |
6 | 0.730 | 1.33 | 1.66 | 25 | |
7 | 0.819 | 1.13 | 1.68 | 49 | |
8 | 0.869 | 0.93 | 1.72 | 84 | |
9 | 0.927 | 0.70 | 1.72 | 147 | |
10 | 0.952 | 0.57 | 1.71 | 203 | |
Contact angle | 1 | 0.176 | 18.61 | 18.74 | 1 |
2 | 0.372 | 16.36 | 16.53 | 1 | |
3 | 0.419 | 15.80 | 16.16 | 2 | |
4 | 0.446 | 15.46 | 15.90 | 3 | |
5 | 0.578 | 13.77 | 16.79 | 22 | |
6 | 0.673 | 12.02 | 16.43 | 37 | |
7 | 0.742 | 10.73 | 16.43 | 53 | |
8 | 0.833 | 8.70 | 16.40 | 88 | |
9 | 0.912 | 6.33 | 16.86 | 166 | |
10 | 0.943 | 5.13 | 16.91 | 230 | |
ΔE* | 1 | 0.657 | 7.70 | 7.76 | 1 |
2 | 0.926 | 3.63 | 3.66 | 1 | |
3 | 0.937 | 3.40 | 3.59 | 6 | |
4 | 0.942 | 3.30 | 3.45 | 4 | |
5 | 0.962 | 2.66 | 3.30 | 24 | |
6 | 0.972 | 2.31 | 2.94 | 27 | |
7 | 0.981 | 1.92 | 2.90 | 51 | |
8 | 0.986 | 1.61 | 2.88 | 79 | |
9 | 0.991 | 1.31 | 2.80 | 114 | |
10 | 0.996 | 0.85 | 2.75 | 222 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, M.-C.; Hung, K.-C.; Xu, J.-W.; Chang, W.-S.; Wu, J.-H. Characterization and Prediction of Physical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment. Polymers 2022, 14, 4374. https://doi.org/10.3390/polym14204374
Hsieh M-C, Hung K-C, Xu J-W, Chang W-S, Wu J-H. Characterization and Prediction of Physical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment. Polymers. 2022; 14(20):4374. https://doi.org/10.3390/polym14204374
Chicago/Turabian StyleHsieh, Ming-Chi, Ke-Chang Hung, Jin-Wei Xu, Wen-Shao Chang, and Jyh-Horng Wu. 2022. "Characterization and Prediction of Physical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment" Polymers 14, no. 20: 4374. https://doi.org/10.3390/polym14204374
APA StyleHsieh, M. -C., Hung, K. -C., Xu, J. -W., Chang, W. -S., & Wu, J. -H. (2022). Characterization and Prediction of Physical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment. Polymers, 14(20), 4374. https://doi.org/10.3390/polym14204374