Characterization and Prediction of Mechanical and Chemical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Vacuum Hydrothermal Treatment of Luanta Fir Wood
2.3. Determination of Mechanical Properties
2.4. Scanning Electron Microscope Imaging
2.5. X-ray Diffraction Analysis
2.6. Solid-State CP/MAS 13C NMR Analysis
2.7. NIR Spectral Measurements
2.8. Constructing the Property Prediction Models
2.9. Analysis of Variance
3. Results and Discussions
3.1. Effects of VH Treatment Conditions on the Mechanical Properties of Luanta Fir Wood
3.2. Effects of VH Treatment Conditions on the Chemical Structure of Luanta Fir Wood
3.3. Mechanical Property Prediction Model for VH-Treated Luanta Fir Wood Based on NIRS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mazela, B.; Zakrzewski, R.; Grześkowiak, W.; Cofta, G.; Bartkowiak, M. Resistance of thermally modified wood to basidiomycetes. Electron. J. Pol. Agric. Univ. 2004, 7, 253–262. [Google Scholar]
- Kocaefe, D.; Poncsak, S.; Tang, J.; Bouazara, M. Effect of heat treatment on the mechanical properties of North American jack pine: Thermogravimetric study. J. Mater. Sci. 2010, 45, 681–687. [Google Scholar] [CrossRef]
- Wentzel, M.; Fleckenstein, M.; Hofmann, T.; Militz, H. Relation of chemical and mechanical properties of Eucalyptus nitens wood thermally modified in open and closed systems. Wood Mater. Sci. Eng. 2019, 14, 165–173. [Google Scholar] [CrossRef]
- Shafizadeh, F. The chemistry of pyrolysis and combustion. In The Chemistry of Solid Wood; Rowell, R.M., Ed.; American Chemical Society: Washington, DC, USA, 1984; pp. 489–529. [Google Scholar] [CrossRef]
- Čabalová, I.; Výbohová, E.; Igaz, R.; Kristak, L.; Kačík, F.; Antov, P.; Papadopoulos, A.N. Effect of oxidizing thermal modification on the chemical properties and thermal conductivity of Norway spruce (Picea abies L.) wood. Wood Mater. Sci. Eng. 2022, 17, 366–375. [Google Scholar] [CrossRef]
- Chien, Y.-C.; Yang, T.-C.; Hung, K.-C.; Li, C.-C.; Xu, J.-W.; Wu, J.-H. Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese cedar and beech wood. Polym. Degrad. Stabil. 2018, 158, 220–227. [Google Scholar] [CrossRef]
- Lee, S.H.; Ashaari, Z.; Lum, W.C.; Halip, J.A.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Tahir, P.M. Thermal treatment of wood using vegetable oils: A review. Constr. Build. Mater. 2018, 181, 408–419. [Google Scholar] [CrossRef]
- Sudo, K.; Shimizu, K.; Sakurai, K. Characterization of steamed wood lignin from beech wood. Holzforschung 1985, 39, 281–288. [Google Scholar] [CrossRef]
- Garrote, G.; Domínguez, H.; Parajó, J.C. Hydrothermal processing of lignocellulosic materials. Holz. Roh. Werkst. 1999, 57, 191–202. [Google Scholar] [CrossRef]
- Čermák, P.; Baar, J.; Dömény, J.; Výbohová, E.; Rousek, R.; Pařil, P.; Oberle, A.; Čabalová, I.; Hess, D.; Vodák, M.; et al. Wood-water interactions of thermally modified, acetylated and melamine formaldehyde resin impregnated beech wood. Holzforschung 2022, 76, 437–450. [Google Scholar] [CrossRef]
- Burmester, A. Dimensional Stabilisation of Wood; Doc. No. IRG/WP 3171; International Research Group on Wood Preservation: Sarajevo, Bosnia and Herzegovina, 1981. [Google Scholar]
- Borrega, M.; Kärenlampi, P.P. Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz. Roh. Werkst. 2008, 66, 63–69. [Google Scholar] [CrossRef]
- Fujino, T.; Moreno, J.M.C.; Swamy, S.; Hirose, T.; Yoshimura, M. Phase and structural change of carbonized wood materials by hydrothermal treatment. Solid State Ion. 2002, 151, 197–203. [Google Scholar] [CrossRef]
- Chung, J.D.; Lin, T.P.; Tan, Y.C.; Lin, M.Y.; Hwang, S.Y. Genetic diversity and biogeography of Cunninghamia konishii (Cupressaceae), an island species in Taiwan: A comparison with Cunninghamia lanceolata, a mainland species in China. Mol. Phylogenet. Evol. 2004, 33, 791–801. [Google Scholar] [CrossRef]
- Cheng, S.S.; Lin, C.Y.; Chung, M.J.; Liu, Y.H.; Huang, C.G.; Chang, S.T. Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind. Crops Prod. 2013, 47, 310–315. [Google Scholar] [CrossRef]
- Hsieh, M.-C.; Hung, K.-C.; Wu, J.-W.; Chang, W.-S.; Wu, J.-H. Characterization and prediction of physical properties of luanta fir wood with vacuum hydrothermal treatment. Polymers 2022, 14, 4374. [Google Scholar] [CrossRef]
- Wentzel, M.; Rolleri, A.; Pesenti, H.; Militz, H. Chemical analysis and cellulose crystallinity of thermally modified Eucalyptus nitens wood from open and closed reactor systems using FTIR and X ray crystallography. Eur. J. Wood Wood Prod. 2019, 77, 517–525. [Google Scholar] [CrossRef]
- Boonstra, M.J.; Tjeerdsma, B. Chemical analysis of heat-treated softwoods. Holz. Roh. Werkst. 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Wentzel, M.; Koddenberg, T.; Militz, H. Anatomical characteristics of thermally modified Eucalyptus nitens wood in an open and closed reactor system. Wood Mater. Sci. Eng. 2020, 15, 223–228. [Google Scholar] [CrossRef]
- Willems, W. Novel economic large-scale production technology for high-quality thermally modified wood. In Proceedings of the 5th European Conference on Wood Modification; Callum, A.S.H., Holger, M., Bruno, A., Eds.; Latvian State Institute of Wood Chemistry: Riga, Latvia, 2010; pp. 31–35. [Google Scholar]
- Acquah, G.E.; Via, B.K.; Billor, N.; Fasina, O.O.; Eckhardt, L.G. Identifying plant part composition of forest logging residue using infrared spectral data and linear discriminant analysis. Sensors 2016, 16, 1375. [Google Scholar] [CrossRef] [Green Version]
- Lengowski, E.C.; de Muñiz, G.I.B.; Klock, U.; Nisgoski, S. Potential use of NIR and visible spectroscopy to analyze chemical properties of thermally treated wood. Maderas-Cienc. Tecnol. 2018, 20, 627–640. [Google Scholar] [CrossRef] [Green Version]
- Sandak, J.; Sandak, A.; Zitek, A.; Hintestoisser, B.; Picchi, G. Development of low-cost portable spectrometers for detection of wood defects. Sensors 2020, 20, 545. [Google Scholar] [CrossRef]
- Esteves, B.M.; Pereira, H. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Watanabe, K.; Hart, F.; Mansfield, S.D.; Avramidis, S. Detection of wet-pockets on the surface of Tsuga heterophylla (Raf.) Sarg. by near infrared (NIR) spectroscopy. Holzforschung 2010, 64, 55–60. [Google Scholar] [CrossRef]
- Sandak, A.; Sandak, J.; Riggio, M. Estimation of physical and mechanical properties of timber members in service by means of infrared spectroscopy. Constr. Build. Mater. 2015, 101, 1197–1205. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Pang, X.; Li, K. Preliminary investigation into the identification of wood species from different locations by near infrared spectroscopy. BioResourses 2015, 10, 8505–8517. [Google Scholar] [CrossRef] [Green Version]
- Lengowski, E.C.; Júnior, E.A.B.; Nisgoski, S.; de Muñiz, G.I.B.; Klock, U. Properties of thermally modified teakwood. Maderas-Cienc. Tecnol. 2020, 23, 1–16. [Google Scholar] [CrossRef]
- Okon, K.E.; Udoakpan, U.I. Physicochemical properties of Pinus massoniana wood subjected to silicone oil heat treatment. Maderas-Cienc. Tecnol. 2019, 21, 531–544. [Google Scholar] [CrossRef] [Green Version]
- CNS 453; Wood—Determination of Compression Properties. Bureau of Standards, Metrology and Inspection: Taipei, Taiwan, 2013.
- CNS 455; Wood—Determination of Ultimate Shearing Stress Parallel to Grain. Bureau of Standards, Metrology and Inspection: Taipei, Taiwan, 2013.
- CNS 460; Wood—Determination of Static Hardness. Bureau of Standards, Metrology and Inspection: Taipei, Taiwan, 2013.
- CNS 454; Wood—Determination of Static Bending Properties. Bureau of Standards, Metrology and Inspection: Taipei, Taiwan, 2013.
- Hsu, F.Y.; Hung, K.C.; Xu, J.W.; Wu, T.L.; Wu, J.H. Physicomechanical properties and creep behavior of plywood composed of fully and partially heat-treated veneers. Wood Sci. Technol. 2021, 55, 445–460. [Google Scholar] [CrossRef]
- Boonstra, M.J.; Van Acker, J.; Tjeerdsma, B.F.; Kegel, E.V. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 2007, 64, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Kallavus, U.; Gravitis, J. A comparative investigation of the ultrastucture of steam-exploded wood with light, scanning and transmission electron microscopy. Holzforschung 1995, 49, 182–188. [Google Scholar] [CrossRef]
- Tomak, E.D.; Ustaomer, D.; Yildiz, S.; Pesman, E. Changes in surface and mechanical properties of heat treated wood during natural weathering. Measurement 2014, 53, 30–39. [Google Scholar] [CrossRef]
- Poncsák, S.; Shi, S.Q.; Kocaefe, D.; Miller, G. Effect of thermal treatment of wood lumbers on their adhesive bond strength and durability. J. Adhes. Sci. Technol. 2007, 21, 745–754. [Google Scholar] [CrossRef]
- Kol, H.Ş.; Özbay, G.; Altun, S. Shear strength of heat-treated tali (Erythrophleum ivorense A. Chev.) and iroko (Chlorophora excelsa) woods with various adhesives. BioResources 2009, 4, 1545–1554. [Google Scholar]
- Korkut, S.; Hiziroglu, S. Effect of heat treatment on mechanical properties of hazelnut wood (Corylus colurna L.). Mater. Des. 2009, 30, 1853–1858. [Google Scholar] [CrossRef]
- Kasemsiri, P.; Hiziroglu, S.; Rimdusit, S. Characterization of heat treated eastern redcedar (Juniperus virginiana L.). J. Mater. Process. Technol. 2012, 212, 1324–1330. [Google Scholar] [CrossRef]
- Kocaefe, D.; Shi, J.L.; Yang, D.Q.; Bouzara, M. Mechanical properties, dimensional stability, and mold resistance of heat-treated jack pine and aspen. For. Prod. J. 2008, 58, 88–93. [Google Scholar]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 1989; 613p. [Google Scholar]
- Biziks, V.; Andersons, B.; Beļkova, Ļ.; Kapača, E.; Militz, H. Changes in the microstructure of birch wood after hydrothermal treatment. Wood Sci. Technol. 2013, 47, 717–735. [Google Scholar] [CrossRef]
- Ling, Z.; Ji, Z.; Ding, D.; Cao, J.; Xu, F. Microstructural and topochemical characterization of thermally modified poplar (Populus cathayaha) cell wall. BioResources 2016, 11, 786–799. [Google Scholar] [CrossRef] [Green Version]
- Tarmian, A.; Mastouri, A. Water-repellent efficiency of thermally modified wood as affected by its permeability. J. For. Res. 2018, 29, 859–867. [Google Scholar] [CrossRef]
- Yun, H.; Tu, D.; Li, K.; Huang, J.; Ou, L. Variation and correlation of heat-treated wood’s crystalline structure and impact toughness. BioResourses 2015, 10, 1487–1494. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.M.; Jiang, Z.H.; Ren, H.Q.; Fei, B.H. Determination of cellulose crystallinity of bamboo culms with X-ray diffraction spectrum. J. Northeast Agric. Univ. 2010, 38, 75–77. [Google Scholar]
- Boonstra, M.G.; Pizzi, A.; Tekely, P.; Pendlebury, J. Chemical modification of Norway spruce and Scots pine. A 13C NMR CP-MAS study of the reactivity and reactions of polymeric wood components with acetic anhydride. Holzforschung 1996, 50, 215–220. [Google Scholar] [CrossRef]
- Melkior, T.; Barthomeuf, C.; Bardet, M. Inputs of solid-state NMR to evaluate and compare thermal reactivity of pine and beech woods under torrefaction conditions and modified atmosphere. Fuel 2017, 187, 250–260. [Google Scholar] [CrossRef]
- Popescu, C.M.; Navi, P.; Peña, M.I.P.; Popescu, M.C. Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis. Spectrochim. Acta A 2018, 191, 405–412. [Google Scholar] [CrossRef]
- Popescu, C.M.; Jones, D.; Kržišnik, D.; Humar, M. Determination of the effectiveness of a combined thermal/chemical wood modification by the use of FT–IR spectroscopy and chemometric methods. J. Mol. Struct. 2020, 1200, 127133. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, C.; Luo, B.; Chen, T.; Lu, J. Characterization of wood surface elemental compositions after thermo-vacuum treatment and superheated-steam heat treatment. BioResourses 2018, 13, 1895–1908. [Google Scholar] [CrossRef] [Green Version]
- Grouss, W.R.; Converse, A.O.; Grethlein, H.E. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb. Technol. 1986, 8, 274–280. [Google Scholar] [CrossRef]
- Burstcher, E.; Bobleter, O.; Schwald, W.; Concin, R.; Binder, H. Chromatographic analysis of biomass reaction products by hydrothermolysis of poplar wood. J. Chromatogr. A 1987, 390, 401–412. [Google Scholar] [CrossRef]
- Shimizu, K.; Sudo, K.; Ono, H.; Fujii, T. Total utilisation of wood components by steam explosion pretreatment. In Wood Processing and Utilization; Kennedy, J.F., Phillips, G.O., Williams, P.A., Eds.; Ellis Horwood: Chichester, UK, 1989; pp. 407–412. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Rinnan, Å.; Nørgaard, L.; van den Berg, F.; Thygesen, J.; Bro, R.; Engelsen, S.B. Data pre-processing. In Infrared Spectroscopy for food Quality Analysis and Control; Sun, D.W., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 29–50. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC-Trend. Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Steinier, J.; Termonia, Y.; Deltour, J. Smoothing and differentiation of data by simplified least square procedure. Anal. Chem. 1972, 44, 1906–1909. [Google Scholar] [CrossRef] [PubMed]
- Sofianto, I.A.; Inagaki, T.; Kato, K.; Itoh, M.; Tsuchikawa, S. Modulus of elasticity prediction model on sugi (Cryptomeria japonica) lumber using online near-infrared (NIR) spectroscopic system. Int. Wood Prod. J. 2017, 8, 193–200. [Google Scholar] [CrossRef]
- Mitic, A.; Cervera-Padrell, A.E.; Mortensen, A.R.; Skovby, T.; Dam-Johansen, K.; Javakhishvili, I.; Hvilsted, S.; Gernaey, K.V. Implementation of near-infrared spectroscopy for in-line monitoring of a dehydration reaction in a tubular laminar reactor. Org. Process Res. Dev. 2016, 20, 395–402. [Google Scholar] [CrossRef]
- Williams, P.C.; Sobering, D.C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J. Near Infrared Spec. 1993, 1, 25–32. [Google Scholar] [CrossRef]
- Schimleck, L.R.; Doran, J.C.; Rimbawanto, A. Near infrared spectroscopy for cost effective screening of foliar oil characteristics in a Melaleuca cajuputi breeding population. J. Agric. Food Chem. 2003, 51, 2433–2437. [Google Scholar] [CrossRef]
- Sofianto, I.A.; Inagaki, T.; Ma, T.; Tsuchikawa, S. Effect of knots and holes on the modulus of elasticity prediction and mapping of sugi (Cryptomeria japonica) veneer using near-infrared hyperspectral imaging (NIR-HSI). Holzforschung 2019, 73, 259–268. [Google Scholar] [CrossRef]
- Todorović, N.; Popović, Z.; Milić, G. Estimation of quality of thermally modified beech wood with red heartwood by FT-NIR spectroscopy. Wood Sci. Technol. 2015, 49, 527–549. [Google Scholar] [CrossRef]
- Yu, L.; Liang, Y.; Zhang, Y.; Cao, J. Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-squares. J. For. Res. 2020, 31, 1053–1060. [Google Scholar] [CrossRef] [Green Version]
- Kobori, H.; Kojima, M.; Yamamoto, H.; Sasaki, Y.; Yamaji, F.M.; Tsuchikawa, S. Vis–NIR spectroscopy for the on-site prediction of wood properties. For. Chron. 2013, 89, 631–638. [Google Scholar] [CrossRef]
Sample | σc,max (MPa) | σs,max (MPa) | Hardness (N) | MOE (GPa) | MOE Retention (%) | MOR (MPa) | MOR Retention (%) |
---|---|---|---|---|---|---|---|
Control | 38 ± 4 ab | 9 ± 3 a | 29 ± 5 ab | 5.7 ± 0.6 abc | - | 58 ± 10 ab | - |
160 °C/4 h | 45 ± 7 a, * | 10 ± 2 a, ns | 28 ± 6 ab, ns | 6.3 ± 0.6 ab, * | 110 ± 10 ab | 59 ± 16 ab, ns | 102 ± 28 a |
160 °C/8 h | 41 ± 7 ab, ns | 10 ± 3 a, ns | 28 ± 5 ab, ns | 5.8 ± 0.6 abc, ns | 102 ± 10 abc | 59 ± 8 a, ns | 103 ± 13 a |
160 °C/16 h | 44 ± 6 a, * | 9 ± 2 a, ns | 30 ± 7 ab, ns | 5.5 ± 0.5 bcd, ns | 97 ± 9 bcd | 57 ± 13 ab, ns | 99 ± 23 ab |
180 °C/4 h | 44 ± 6 a, * | 11 ± 2 a, ns | 30 ± 8 ab, ns | 5.3 ± 0.5 bcd, * | 92 ± 8 bcd | 55 ± 9 ab, ns | 95 ± 16 ab |
180 °C/8 h | 43 ± 6 ab, * | 9 ± 2 a, ns | 28 ± 5 ab, ns | 4.7 ± 0.5 cd, *** | 83 ± 8 cd | 48 ± 9 ab, * | 83 ± 15 ab |
180 °C/16 h | 43 ± 10 ab, ns | 8 ± 2 ab, ns | 28 ± 6 ab, ns | 4.6 ± 0.4 d, *** | 80 ± 8 d | 42 ± 8 ab, *** | 73 ± 13 ab |
200 °C/4 h | 44 ± 7 a, * | 10 ± 2 a, ns | 30 ± 7 ab, ns | 5.4 ± 1.1 bcd, ns | 94 ± 19 bcd | 58 ± 10 ab, ns | 100 ± 17 ab |
200 °C/8 h | 45 ± 7 a, * | 10 ± 2 a, ns | 35 ± 7 a, * | 6.7 ± 0.9 a, ** | 118 ± 15 a | 57 ± 11 ab, ns | 98 ± 20 ab |
200 °C/16 h | 44 ± 5 a, * | 9 ± 2 a, ns | 32 ± 7 a, ns | 6.2 ± 0.6 ab, * | 108 ± 11 ab | 46 ± 9 ab, * | 79 ± 15 ab |
220 °C/4 h | 46 ± 8 a, * | 10 ± 2 a, ns | 35 ± 8 a, * | 6.1 ± 0.7 ab, ns | 107 ± 12 ab | 52 ± 10 ab, ns | 91 ± 17 ab |
220 °C/8 h | 41 ± 6 ab, ns | 9 ± 2 a, ns | 32 ± 7 a, ns | 5.9 ± 0.6 ab, ns | 103 ± 10 ab | 44 ± 12 ab, * | 78 ± 21 ab |
220 °C/16 h | 42 ± 8 ab, ns | 9 ± 3 a, ns | 33 ± 6 a, ns | 5.6 ± 0.6 abcd, ns | 98 ± 10 bcd | 40 ± 15 b, ** | 69 ± 27 b |
240 °C/4 h | 43 ± 7 ab, * | 8 ± 2 ab, ns | 29 ± 7 ab, ns | 5.9 ± 0.6 ab, ns | 103 ± 11 ab | 43 ± 10 ab, ** | 75 ± 17 ab |
240 °C/8 h | 31 ± 8 b, * | 5 ± 2 bc, *** | 31 ± 6 a, ns | 1.7 ± 0.3 e, *** | 29 ± 5 e | 8 ± 4 c, *** | 14 ± 6 c |
240 °C/16 h | 17 ± 3 c, *** | 4 ± 1 c, *** | 19 ± 4 b, * | 0.6 ± 0.2 e, *** | 11 ± 3 e | 3 ± 1 c, *** | 5 ± 2 c |
Properties | Calibration Data | Prediction Data | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | N | Min | Max | Mean | N | |
σc,max (MPa) | 12 | 64 | 41 | 192 | 17 | 62 | 43 | 48 |
σs,max (MPa) | 1 | 16 | 9 | 192 | 3 | 14 | 9 | 48 |
Hardness (N) | 1 | 17 | 7 | 192 | 4 | 17 | 8 | 48 |
MOE (GPa) | 0.1 | 8.6 | 5.2 | 192 | 0.6 | 8.6 | 5.2 | 48 |
MOR (MPa) | 1 | 90 | 46 | 192 | 2 | 74 | 45 | 48 |
Properties | Preprocessing Method | LVs | R2c | RMSEC |
---|---|---|---|---|
σc,max | Original spectra | 10 | 0.500 | 6.75 |
MSC | 10 | 0.515 | 6.65 | |
SNV | 10 | 0.522 | 6.60 | |
MSC + baseline correction | 10 | 0.515 | 6.64 | |
1stDer | 10 | 0.810 | 4.16 | |
1stDer + SG | 10 | 0.773 | 4.55 | |
2ndDer | 10 | 0.737 | 4.89 | |
2ndDer + SG | 10 | 0.949 | 2.20 | |
σs,max | Original spectra | 10 | 0.482 | 2.03 |
MSC | 10 | 0.481 | 2.04 | |
SNV | 10 | 0.508 | 1.98 | |
MSC + baseline correction | 10 | 0.486 | 2.03 | |
1stDer | 10 | 0.832 | 1.16 | |
1stDer + SG | 10 | 0.752 | 1.41 | |
2ndDer | 10 | 0.750 | 1.41 | |
2ndDer + SG | 10 | 0.947 | 0.65 | |
Hardness | Original spectra | 10 | 0.304 | 2.21 |
MSC | 10 | 0.309 | 2.21 | |
SNV | 10 | 0.332 | 2.17 | |
MSC + baseline correction | 10 | 0.307 | 2.21 | |
1stDer | 10 | 0.773 | 1.27 | |
1stDer + SG | 10 | 0.659 | 1.55 | |
2ndDer | 10 | 0.623 | 1.63 | |
2ndDer + SG | 10 | 0.928 | 0.72 | |
MOE | Original spectra | 10 | 0.793 | 0.77 |
MSC | 10 | 0.810 | 0.74 | |
SNV | 10 | 0.824 | 0.71 | |
MSC + baseline correction | 10 | 0.816 | 0.73 | |
1stDer | 10 | 0.936 | 0.43 | |
1stDer + SG | 10 | 0.923 | 0.47 | |
2ndDer | 10 | 0.916 | 0.49 | |
2ndDer + SG | 10 | 0.977 | 0.26 | |
MOR | Original spectra | 10 | 0.694 | 10.73 |
MSC | 10 | 0.691 | 10.79 | |
SNV | 10 | 0.703 | 10.57 | |
MSC + baseline correction | 10 | 0.691 | 10.79 | |
1stDer | 10 | 0.904 | 6.03 | |
1stDer + SG | 10 | 0.868 | 7.05 | |
2ndDer | 10 | 0.873 | 6.91 | |
2ndDer + SG | 10 | 0.973 | 3.21 |
Properties | LVs | R2c | RMSEC | RMSECV | Difference (%) |
---|---|---|---|---|---|
σc,max | 1 | 0.363 | 7.58 | 7.61 | 0 |
2 | 0.451 | 7.06 | 7.15 | 1 | |
3 | 0.466 | 7.01 | 7.12 | 2 | |
4 | 0.490 | 6.92 | 7.14 | 3 | |
5 | 0.575 | 6.43 | 7.78 | 21 | |
6 | 0.672 | 5.64 | 7.96 | 41 | |
7 | 0.761 | 4.94 | 8.11 | 64 | |
8 | 0.858 | 3.78 | 8.10 | 114 | |
9 | 0.910 | 2.98 | 8.23 | 176 | |
10 | 0.949 | 2.25 | 8.24 | 266 | |
σs,max | 1 | 0.330 | 2.27 | 2.28 | 1 |
2 | 0.413 | 2.14 | 2.16 | 1 | |
3 | 0.436 | 2.11 | 2.17 | 3 | |
4 | 0.456 | 2.08 | 2.17 | 4 | |
5 | 0.562 | 1.89 | 2.27 | 20 | |
6 | 0.665 | 1.66 | 2.32 | 40 | |
7 | 0.758 | 1.44 | 2.33 | 62 | |
8 | 0.847 | 1.13 | 2.30 | 104 | |
9 | 0.915 | 0.87 | 2.29 | 163 | |
10 | 0.947 | 0.68 | 2.28 | 236 | |
Hardness | 1 | 0.099 | 2.47 | 2.49 | 0 |
2 | 0.131 | 2.45 | 2.48 | 1 | |
3 | 0.177 | 2.40 | 2.47 | 3 | |
4 | 0.205 | 2.37 | 2.46 | 4 | |
5 | 0.306 | 2.22 | 2.53 | 14 | |
6 | 0.442 | 2.02 | 2.70 | 33 | |
7 | 0.616 | 1.84 | 2.78 | 52 | |
8 | 0.779 | 1.37 | 2.79 | 103 | |
9 | 0.866 | 1.01 | 2.79 | 176 | |
10 | 0.928 | 0.75 | 2.78 | 271 | |
MOE | 1 | 0.581 | 1.08 | 1.09 | 1 |
2 | 0.693 | 0.93 | 0.95 | 1 | |
3 | 0.726 | 0.89 | 0.91 | 3 | |
4 | 0.763 | 0.83 | 0.85 | 4 | |
5 | 0.853 | 0.66 | 0.77 | 16 | |
6 | 0.877 | 0.61 | 0.72 | 18 | |
7 | 0.924 | 0.48 | 0.71 | 49 | |
8 | 0.943 | 0.43 | 0.70 | 65 | |
9 | 0.963 | 0.33 | 0.72 | 115 | |
10 | 0.977 | 0.27 | 0.72 | 170 | |
MOR | 1 | 0.554 | 12.74 | 12.81 | 1 |
2 | 0.666 | 11.08 | 11.17 | 1 | |
3 | 0.694 | 10.65 | 10.98 | 3 | |
4 | 0.704 | 10.51 | 10.87 | 3 | |
5 | 0.733 | 10.06 | 10.92 | 9 | |
6 | 0.791 | 9.15 | 11.75 | 28 | |
7 | 0.864 | 7.23 | 11.79 | 63 | |
8 | 0.921 | 5.59 | 11.73 | 110 | |
9 | 0.954 | 4.40 | 11.56 | 162 | |
10 | 0.973 | 3.36 | 11.34 | 238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, M.-C.; Hung, K.-C.; Xu, J.-W.; Wu, Y.-H.; Chang, W.-S.; Wu, J.-H. Characterization and Prediction of Mechanical and Chemical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment. Polymers 2023, 15, 147. https://doi.org/10.3390/polym15010147
Hsieh M-C, Hung K-C, Xu J-W, Wu Y-H, Chang W-S, Wu J-H. Characterization and Prediction of Mechanical and Chemical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment. Polymers. 2023; 15(1):147. https://doi.org/10.3390/polym15010147
Chicago/Turabian StyleHsieh, Ming-Chi, Ke-Chang Hung, Jin-Wei Xu, Yi-Hung Wu, Wen-Shao Chang, and Jyh-Horng Wu. 2023. "Characterization and Prediction of Mechanical and Chemical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment" Polymers 15, no. 1: 147. https://doi.org/10.3390/polym15010147
APA StyleHsieh, M. -C., Hung, K. -C., Xu, J. -W., Wu, Y. -H., Chang, W. -S., & Wu, J. -H. (2023). Characterization and Prediction of Mechanical and Chemical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment. Polymers, 15(1), 147. https://doi.org/10.3390/polym15010147