Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of ENR–FeCl3/CNT–CCB Hybrid Nanocomposites
2.3. Cure Characterization
2.4. Tensile Properties
2.5. Morphological Characterization
2.6. Temperature Scanning Stress Relaxation (TSSR)
2.7. Crosslink Density
2.8. Bound Rubber Contents
2.9. Payne Effect
2.10. Dynamic Mechanical Analysis
2.11. Electrical Properties
3. Results and Discussion
3.1. Curing Characteristics
3.2. Tensile Properties
3.3. Morphological Properties
3.4. Payne Effect
3.5. Bound Rubber Contents
3.6. Temperature Scanning Stress Relaxation (TSSR)
3.7. Crosslink Density
3.8. Dynamic Mechanical Analysis (DMA)
3.9. Electrical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanrattanakul, V.; Wattanathai, B.; Tiangjunya, A.; Muhamud, P. In situ epoxidized natural rubber: Improved oil resistance of natural rubber. J. Appl. Polym. Sci. 2003, 90, 261–269. [Google Scholar] [CrossRef]
- Ruksakulpiwat, C.; Nuasaen, S.; Poonsawat, C.; Khansawai, P. Synthesis and Modification of Epoxidized Natural Rubber from Natural Rubber Latex. Adv. Mater. Res. 2008, 47–50, 734–737. [Google Scholar]
- Aziana, A.H.; Filza, M.S.S.; Roslim, R.; Rubaizah, M.R.F. Assessing biodegradability of epoxidized natural rubber latex. J. Rubber Res. 2021, 24, 595–605. [Google Scholar] [CrossRef]
- Salaeh, S.; Muensit, N.; Bomlai, P.; Nakason, C. Ceramic/natural rubber composites: Influence types of rubber and ceramic materials on curing, mechanical, morphological, and dielectric properties. J. Mater. Sci. 2010, 46, 1723–1731. [Google Scholar] [CrossRef]
- Yangthong, H.; Pichaiyut, S.; Wisunthorn, S.; Kummerlöwe, C.; Vennemann, N.; Nakason, C. Role of geopolymer as a cure activator in sulfur vulcanization of epoxidized natural rubber. J. Appl. Pol. Sci. 2019, 137, 48624. [Google Scholar] [CrossRef]
- Gelling, I.R.; Morrison, N.J. Sulfur vulcanization and oxidative aging of epoxidized natural rubber. Rubber Chem. Technol. 1985, 58, 243–257. [Google Scholar] [CrossRef]
- Larpkasemsuk, A.; Raksaksri, L.; Chuayjuljit, S.; Chaiwutthinan, P. Effects of sulfur vulcanization system on cure characteristics, physical properties and thermal aging of epoxidized natural rubber. J. Metals. Mater. Miner. 2019, 29, 49–57. [Google Scholar]
- Boden, J.; Bowen, C.R.; Buchard, A.; Davidson, M.G.; Norris, C. Understanding the effects of cross-linking density on the self-healing performance of epoxidized natural rubber and natural rubber. ACS Omega 2022, 7, 15098–15105. [Google Scholar] [CrossRef]
- Suteewong, T.; Tangboriboonrat, P. Particle morphology of epoxidised natural rubber latex prevulcanized by peroxide system. e-Polymers 2007, 7, 1409–1417. [Google Scholar] [CrossRef]
- Poh, B.T.; Lim, C.H. Effect of cross-linking on adhesion property of benzoyl-peroxide-cured epoxidized natural rubber (ENR 50) adhesives. J. Elastom. Plast. 2012, 46, 187–198. [Google Scholar] [CrossRef]
- Pire, M.; Norvez, S.; Iliopoulos, I.; Le Rossignol, B.; Leibler, L. Dicarboxylic acids may compete with standard vulcanisation processes for crosslinking epoxidised natural rubber. Compos. Interfaces 2013, 21, 45–50. [Google Scholar] [CrossRef]
- Mandal, S.; Hait, S.; Simon, F.; Ghosh, A.; Scheler, U.; Arief, I.; Tada, T.; Hoang, T.X.; Wießner, S.; Heinrich, G.; et al. Transformation of epoxidized natural rubber into ionomers by grafting of 1H-imidazolium ion and development of a dynamic reversible network. ACS Appl. Polym. Mater. 2022, 4, 6612–6622. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Zhang, Z.; Wu, S.; Tang, Z.; Guo, B.; Zhang, L. Toughening elastomers using a mussel-inspired multiphase design. ACS Appl. Mater. Interfaces 2018, 10, 23485–23489. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Simon, F.; Banerjee, S.S.; Tunnicliffe, L.B.; Nakason, C.; Das, C.; Das, M.; Naskar, K.; Wiessner, S.; Heinrich, G.; et al. Controlled release of metal ion cross-linkers and development of self-healable epoxidized natural rubber. ACS Appl. Polym. Mater. 2021, 3, 1190–1202. [Google Scholar] [CrossRef]
- Smith, J.D.B. Metal acetylacetonates as latent accelerators for anhydridehyphen;cured epoxy resins. J. Appl. Polym. Sci. 1981, 26, 979–986. [Google Scholar] [CrossRef]
- Rosniza, H.; Mohamad, A.B. The structural studies of oxirane ring opening reaction in Epoxidized Natural Rubber (ENR-50) by SnCl2.2H2O and the formation of ENR/TiN complex hybrid. Adv. Mater. Res. 2012, 626, 727–737. [Google Scholar]
- Damampai, K.; Pichaiyut, S.; Mandal, S.; Wießner, S.; Das, A.; Nakason, C. Internal polymerization of epoxy group of epoxidized natural rubber by ferric chloride and formation of strong network structure. Polymers 2021, 13, 4145. [Google Scholar] [CrossRef]
- Damampai, K.; Pichaiyut, S.; Das, A.; Nakason, C. Internal polymerization of epoxy group of epoxidized natural rubber by ferric chloride filled with carbon nanotubes: Mechanical, morphological, thermal and electrical properties of rubber vulcanizates. Express Polym. Lett. 2022, 16, 812–826. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Z.; Guo, B.; Zhang, L. Enabling design of advanced elastomer with bioinspired metal–oxygen coordination. ACS Appl. Mater. Interfaces 2016, 8, 32520–32527. [Google Scholar] [CrossRef]
- Yokkhun, P.; Thongnuanchan, B.; Nakason, C. Influence of epoxide levels in Epoxidized Natural Rubber (ENR) molecules on cure characteristics, dynamic properties and mechanical properties of ENR/Montmorillonite clay nanocomposites. Adv. Mater. Res. 2013, 844, 247–250. [Google Scholar]
- Matchawet, S.; Kaesaman, A.; Bomlai, P.; Nakason, C. Effects of multi-walled carbon nanotubes and conductive carbon black on electrical, dielectric, and mechanical properties of epoxidized natural rubber composites. Polym. Compos. 2015, 38, 1031–1042. [Google Scholar] [CrossRef]
- Yangthong, H.; Wisunthorn, S.; Pichaiyut, S.; Nakason, C. Novel epoxidized natural rubber composites with geopolymers from fly ash waste. Waste Manag. 2019, 87, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Krainoi, A.; Kummerlöwe, C.; Nakaramontri, Y.; Vennemann, N.; Pichaiyut, S.; Wisunthorn, S.; Nakason, C. Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polym. Test. 2018, 66, 122–136. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Stöckelhuber, K.W.; Heinrich, G. Elastomer composites based on carbon nanotubes and ionic liquid. Rubber Chem. Technol. 2013, 86, 367–400. [Google Scholar] [CrossRef]
- Le, H.; Hoang, X.; Das, A.; Gohs, U.; Stoeckelhuber, K.-W.; Boldt, R.; Heinrich, G.; Adhikari, R.; Radusch, H.-J. Kinetics of filler wetting and dispersion in carbon nanotube/rubber composites. Carbon 2012, 50, 4543–4556. [Google Scholar] [CrossRef]
- Steinhauser, D.; Subramaniam, K.; Das, A.; Heinrich, G.; Klueppel, M. Influence of ionic liquids on the dielectric relaxation behavior of CNT based elastomer nanocomposites. Express Polym. Lett. 2012, 6, 927–936. [Google Scholar] [CrossRef]
- Rooj, S.; Das, A.; Stöckelhuber, K.W.; Wießner, S.; Fischer, D.; Reuter, U.; Heinrich, G. Expanded organoclay assisted dispersion and simultaneous structural alteration of multiwall carbon nanotube (MWCNT) clusters in natural rubber. Compos. Sci. Technol. 2015, 107, 36–43. [Google Scholar] [CrossRef]
- Poikelispää, M.; Das, A.; Dierkes, W.; Vuorinen, J. The effect of partial replacement of carbon black by carbon nanotubes on the properties of natural rubber/butadiene rubber compound. J. Appl. Polym. Sci. 2013, 130, 3153–3160. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Socher, R.; Krause, B.; Hermasch, S.; Wursche, R.; Pötschke, P. Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black. Compos. Sci. Technol. 2011, 71, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.M.; Lin, L.; Deng, H.; Gao, X.; Bilotti, E.; Peijs, T.; Zhang, Q.; Fu, Q. Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. Express Polym. Lett. 2012, 6, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.P.; Liang, G.D.; Tjong, S.C. Positive temperature coefficient effect of polypropylene/carbon nanotube/montmorillonite hybrid nanocomposites. IEEE Trans. Nanotechnol. 2009, 8, 729–736. [Google Scholar] [CrossRef]
- Chen, W.; Duan, W.; Liu, Y.; Wang, Q.; Qi, F. Facile fabrication of multifunctional polymer composites based on three-dimensional interconnected networks of graphene and carbon nanotubes. Ind. Eng. Chem. Res. 2019, 58, 21531–21541. [Google Scholar] [CrossRef]
- Thongkong, N.; Wisunthorn, S.; Pichaiyut, S.; Nakason, C.; Kiatkamjornwong, S. Natural rubber nanocomposites based on hybrid filler of zinc nanoparticles and carbon nanotubes: Electrical conductivity and other related properties. Express Polym. Lett. 2020, 14, 1137–1154. [Google Scholar] [CrossRef]
- Krainoi, A.; Kummerlöwe, C.; Vennemann, N.; Nakaramontri, Y.; Pichaiyut, S.; Nakason, C. Effect of carbon nanotubes decorated with silver nanoparticles as hybrid filler on properties of natural rubber nanocomposites. J. Appl. Polym. Sci. 2018, 13, 47281. [Google Scholar] [CrossRef]
- Nakaramontri, Y.; Pichaiyut, S.; Wisunthorn, S.; Nakason, C. Hybrid carbon nanotubes and conductive carbon black in natural rubber composites to enhance electrical conductivity by reducing gaps separating carbon nanotube encapsulates. Eur. Polym. J. 2017, 90, 467–484. [Google Scholar] [CrossRef]
- Wu, M.; Heinz, M.; Vennemann, N. Investigation of un-vulcanized natural rubber by means of temperature scanning stress relaxation measurements. Adv. Mater. Res. 2013, 718–720, 117–123. [Google Scholar]
- Flory, P.J.; Rehner, J. Statistical mechanics of cross-linked polymer networks II swelling. J. Chem. Phys 1943, 11, 521–526. [Google Scholar] [CrossRef]
- Nakaramontri, Y.; Kumerlöwe, C.; Nakason, C.; Vennemann, N. The effect of surface functionalization of carbon nanotubes on properties of natural rubber/carbon nanotube composites. Polym. Compos. 2014, 36, 2113–2122. [Google Scholar] [CrossRef]
- Matchawet, S.; Kaesaman, A.; Vennemann, N.; Kumerlöwe, C.; Nakason, C. Effects of imidazolium ionic liquid on cure characteristics, electrical conductivity and other related properties of epoxidized natural rubber vulcanizates. Eur. Polym. J. 2017, 87, 344–359. [Google Scholar] [CrossRef]
- Wolff, S.; Wang, M.J.; Tan, E.H. Filler-elastomer interactions. part VII study on bound rubber. Rubber. Chem. Technol. 1993, 66, 163–177. [Google Scholar] [CrossRef]
- Pötschke, P.; Fornes, T.; Paul, D. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 2002, 43, 3247–3255. [Google Scholar] [CrossRef]
- Du, F.; Fischer, J.E.; Winey, K.I. Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 3333–3338. [Google Scholar] [CrossRef]
- Bořkovec, A.B. Reaction of epoxides with ferric chloride1. J. Org. Chem. 1958, 23, 828–830. [Google Scholar] [CrossRef]
- Nakaramontri, Y.; Kummerlöwe, C.; Nakason, C.; Vennemann, N. Effect of modified natural rubber and functionalization of carbon nanotubes on properties of natural rubber composites. Adv. Mater. Res. 2014, 844, 301–304. [Google Scholar]
- Pötschke, P.; Dudkin, S.M.; Alig, I. Dielectric spectroscopy on melt processed polycarbonate—Multiwalled carbon nanotube composites. Polymer 2003, 44, 5023–5030. [Google Scholar] [CrossRef]
- Xu, J.; Wong, M.; Wong, C. Super high dielectric constant carbon black-filled polymer composites as integral capacitor dielectrics. In Proceedings of the 54th Electronic Components and Technology Conference (IEEE Cat. No. 04CH37546), Las Vegas, NV, USA, 1–4 June 2004; Volume 1, pp. 536–541. [Google Scholar]
Chemicals | Sources | Content (phr) |
---|---|---|
Epoxidized natural rubber (ENR-50) | Muangmai Guthrie Co. Ltd. (Surat Thani, Thailand) | 100 |
Ferric chloride (FeCl3) | Sigma-Aldrich Pte Ltd. (Darmstadt, Germany) | 7 (mmol) |
Carbon nanotubes (CNTs) | Nanocyl S.A. (Sambreville, Belgium) | 7 |
Conductive carbon black (CCB) | Cabot Corporation. (Pampa, TX, USA) | 0, 2.5, 5, 7, 10 and 15 |
Compounds | ML (dN.m) | MH (dN.M) | MH-ML (dN.m) | ts2 (min) | tc90 (min) | CRI |
---|---|---|---|---|---|---|
F7-CNT7 | 1.62 | 9.21 | 7.59 | 1.32 | 5.91 | 21.78 |
CNT7/CCB2.5 | 2.61 | 11.17 | 8.56 | 1.30 | 5.74 | 22.52 |
CNT7/CCB5.0 | 3.15 | 11.81 | 8.66 | 1.19 | 5.54 | 22.98 |
CNT7/CCB7.0 | 3.81 | 12.87 | 9.06 | 1.09 | 5.01 | 25.51 |
CNT7/CCB10.0 | 4.84 | 14.51 | 9.67 | 1.01 | 4.76 | 27.32 |
CNT7/CCB15.0 | 5.02 | 17.79 | 12.77 | 0.78 | 4.23 | 28.98 |
Materials | 100% Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
F7-CNT7 | 1.63 ± 0.10 | 2.58 ± 0.09 | 165.55 ± 19.11 |
CNT7/CCB2.5 | 1.68 ± 0.03 | 2.67 ± 0.12 | 155.62 ± 12.13 |
CNT7/CCB5.0 | 1.96 ± 0.05 | 2.83 ± 0.10 | 144.02 ± 12.22 |
CNT7/CCB7.0 | 2.16 ± 0.12 | 2.96 ± 0.09 | 141.53 ± 10.31 |
CNT7/CCB10.0 | 2.21 ± 0.02 | 3.16 ± 0.05 | 137.66 ± 13.77 |
CNT7/CCB15.0 | 2.66 ± 0.10 | 3.43 ± 0.16 | 136.05 ± 12.89 |
Samples | Payne Effect (%) |
---|---|
F7-CNT7 | 20.12 |
CNT7/CCB2.5 | 31.35 |
CNT7/CCB5.0 | 35.12 |
CNT7/CCB7.0 | 39.51 |
CNT7/CCB10.0 | 42.07 |
CNT7/CCB15.0 | 46.41 |
Sample | Mooney–Rivlin Eq. | TSSR Evaluation |
---|---|---|
Crosslink Densities (mol/m3) | Crosslink Densities (mol/m3) | |
ENR–FeCl3 | 110.13 ± 2.01 | 66.28 |
F7-CNT7 | 167.97 ± 2.16 | 71.71 |
CNT7/CCB2.5 | 171.52 ± 8.18 | 76.98 |
CNT7/CCB5.0 | 184.21 ± 1.12 | 85.27 |
CNT7/CCB7.0 | 193.49 ± 1.98 | 87.52 |
CNT7/CCB10.0 | 215.24 ± 10.15 | 91.65 |
CNT7/CCB15.0 | 217.93 ± 10.01 | 96.55 |
Sample | Glass Transition Temperature (°C) |
---|---|
F7-CNT7 | −18.30 |
CNT7/CCB2.5 | −16.35 |
CNT7/CCB5.0 | −11.31 |
CNT7/CCB7.0 | −10.63 |
CNT7/CCB10.0 | −7.77 |
CNT7/CCB15.0 | −7.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damampai, K.; Pichaiyut, S.; Stöckelhuber, K.W.; Das, A.; Nakason, C. Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers. Polymers 2022, 14, 4392. https://doi.org/10.3390/polym14204392
Damampai K, Pichaiyut S, Stöckelhuber KW, Das A, Nakason C. Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers. Polymers. 2022; 14(20):4392. https://doi.org/10.3390/polym14204392
Chicago/Turabian StyleDamampai, Kriengsak, Skulrat Pichaiyut, Klaus Werner Stöckelhuber, Amit Das, and Charoen Nakason. 2022. "Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers" Polymers 14, no. 20: 4392. https://doi.org/10.3390/polym14204392
APA StyleDamampai, K., Pichaiyut, S., Stöckelhuber, K. W., Das, A., & Nakason, C. (2022). Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers. Polymers, 14(20), 4392. https://doi.org/10.3390/polym14204392