SAXS Investigation of the Effect of Freeze/Thaw Cycles on the Nanostructure of Nafion® Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Nafion® Membranes
2.2. Small-Angle X-ray Scattering
2.3. Analysis Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Baghdadi, M.A.S. Mechanical behaviour of membrane electrode assembly (MEA) during cold start of PEM fuel cell from subzero environment temperature. Int. J. Energy Environ. 2015, 6, 107. [Google Scholar]
- Lee, S.Y.; Kim, H.J.; Cho, E.; Lee, K.S.; Lim, T.H.; Hwang, I.C.; Jang, J.H. Performance degradation and microstructure changes in freeze–thaw cycling for PEMFC MEAs with various initial microstructures. Int. J. Hydrogen Energy 2010, 35, 12888–12896. [Google Scholar] [CrossRef]
- Ous, T.; Arcoumanis, C. Degradation aspects of water formation and transport in proton exchange membrane fuel cell: A review. J. Power Sources 2013, 240, 558–582. [Google Scholar] [CrossRef]
- Zhan, Z.; Zhao, H.; Sui, P.C.; Jiang, P.; Pan, M.; Djilali, N. Numerical analysis of ice-induced stresses in the membrane electrode assembly of a PEM fuel cell under sub-freezing operating conditions. Int. J. Hydrogen Energy 2018, 43, 4563–4582. [Google Scholar] [CrossRef]
- Oh, Y.; Kim, S.K.; Lim, S.; Jung, D.H.; Peck, D.H.; Shul, Y. The effects of freeze-thaw cycling and gas purging on performance degradation in direct methanol fuel cells. Int. J. Hydrogen Energy 2012, 37, 17268–17274. [Google Scholar] [CrossRef]
- Sabawa, J.P.; Bandarenka, A.S. Degradation mechanisms in polymer electrolyte membrane fuel cells caused by freeze-cycles: Investigation using electrochemical impedance spectroscopy. Electrochim. Acta 2019, 311, 21–29. [Google Scholar] [CrossRef]
- Niu, H.; Ji, C.; Wang, S.; Liang, C. Research on PEMFC resistance relaxation characteristics and degradation under thermal cycles with different residual water locations. Int. J. Hydrogen Energy 2022, 47, 2662–2672. [Google Scholar] [CrossRef]
- McDonald, R.C.; Mittelsteadt, C.K.; Thompson, E.L. Effects of deep temperature cycling on Nafion® 112 membranes and membrane electrode assemblies. Fuel Cells 2004, 4, 208–213. [Google Scholar] [CrossRef]
- Kusoglu, A.; Calabrese, M.; Weber, A.Z. Effect of mechanical compression on chemical degradation of Nafion membranes. ECS Electrochem. Lett. 2014, 3, 33. [Google Scholar] [CrossRef]
- Amamou, A.; Kandidayeni, M.; Boulon, L.; Kelouwani, S. Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells. Appl. Energy 2017, 216, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Zhu, Y.; Ni, M.; Jiang, Z.; Lou, D.; Han, L.; Zhong, D. Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start. Appl. Energy 2019, 241, 420–432. [Google Scholar] [CrossRef]
- Zhan, Z.; Yuan, C.; Hu, Z.; Wang, H.; Sui, P.C.; Djilali, N.; Pan, M. Experimental study on different preheating methods for the cold-start of PEMFC stacks. Energy 2018, 162, 1029–1040. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Yue, L.; Wang, G. Cold-start icing characteristics of proton-exchange membrane fuel cells. Int. J. Hydrogen Energy 2019, 44, 12033–12042. [Google Scholar] [CrossRef]
- Amamou, A.; Boulon, L.; Kelouwani, S. Comparison of self-cold start strategies of automotive Proton Exchange Membrane Fuel Cell. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February 2018; pp. 904–908. [Google Scholar] [CrossRef]
- Knorr, F.; Sanchez, D.G.; Schirmer, J.; Gazdzicki, P.; Friedrich, K.A. Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells. Appl. Energy 2019, 238, 1–10. [Google Scholar] [CrossRef]
- Voloshchenko, G.N.; Zasypkina, A.A.; Spasov, D.D. Model Study of a Cold Start of a Power Plant Based on a Polymer Electrolyte Membrane Fuel Cells in the Conditions of Arctic Temperatures. Nanotechnologies Russ. 2022, 15, 326–332. [Google Scholar] [CrossRef]
- Ivanova, N.A.; Spasov, D.D.; Grigoriev, S.A.; Kamyshinsky, R.A.; Peters, G.S.; Mensharapov, R.M.; Seregina, E.A.; Millet, P.; Fateev, V.N. On the influence of methanol addition on the performances of PEM fuel cells operated at subzero temperature. Int. J. Hydrogen Energy 2021, 46, 18116–18127. [Google Scholar] [CrossRef]
- Ivanova, N.A.; Spasov, D.D.; Mensharapov, R.M.; Kukueva, E.V.; Zasypkina, A.A.; Fateev, V.N.; Grigoriev, S.A. Efficient and stable subzero operation of a PEM fuel cell with a composite anode using hydrogen-methanol composition during freeze/thaw cycles. Int. J. Hydrogen Energy, 2022; in press. [Google Scholar] [CrossRef]
- Miao, Z.; Yu, H.; Song, W.; Hao, L.; Shao, Z.; Shen, Q.; Yi, B. Characteristics of proton exchange membrane fuel cells cold start with silica in cathode catalyst layers. Int. J. Hydrogen Energy 2010, 35, 5552–5557. [Google Scholar] [CrossRef]
- Nicotera, I.; Coppola, L.; Rossi, C.O.; Youssry, M.; Ranieri, G.A. NMR investigation of the dynamics of confined water in Nafion-based electrolyte membranes at subfreezing temperatures. J. Phys. Chem. B 2009, 113, 13935–13941. [Google Scholar] [CrossRef]
- Jalani, N.H.; Dunn, K.; Datta, R. Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim. Acta 2005, 51, 553–560. [Google Scholar] [CrossRef]
- Tsai, C.E.; Hwang, B.J. Intermolecular interactions between methanol/water molecules and Nafion™ membrane: An infrared spectroscopy study. Fuel cells 2007, 7, 408–416. [Google Scholar] [CrossRef]
- Siroma, Z.; Fujiwara, N.; Ioroi, T.; Yamazaki, S.; Yasuda, K.; Miyazaki, Y. Dissolution of Nafion® membrane and recast Nafion® film in mixtures of methanol and water. J. Power Sources 2004, 126, 41–45. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Ivanova, N.A.; Spasov, D.D.; Kukueva, E.V.; Zasypkina, A.A.; Seregina, E.A.; Grigoriev, S.A.; Fateev, V.N. Carbon-Supported Pt-SnO2 Catalysts for Oxygen Reduction Reaction over a Wide Temperature Range: Rotating Disk Electrode Study. Catalysts 2021, 11, 1469. [Google Scholar] [CrossRef]
- Tsipoaka, M.; Aziz, M.A.; Park, J.; Shanmugam, S. Ti2Zr2O8 nanotube as an additive in the fuel cell membrane and catalyst layer for improved low humidity operation. J. Power Sources 2021, 509, 230386. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Pushkarev, A.S.; Pushkareva, I.V.; Presnyakova, N.N.; Chumakov, R.G.; Presnyakov, M.Y.; Grigoriev, S.A.; Fateev, V.N. On the Influence of Composition and Structure of Carbon-Supported Pt-SnO2 Hetero-Clusters onto Their Electrocatalytic Activity and Durability in PEMFC. Catalysts 2019, 9, 803. [Google Scholar] [CrossRef] [Green Version]
- Angayarkanni, R.; Ganesan, A.; Dhelipan, M.; Karthikeyan, S.; Mani, N.; Thiyagarajan, P. Self-humidified operation of a PEM fuel cell using a novel silica composite coating method. Int. J. Hydrogen Energy 2022, 47, 4827–4837. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Mensharapov, R.M.; Zasypkina, A.A.; Seregina, E.A.; Grigoriev, S.A.; Fateev, V.N. Nanostructured Pt20/SiO2x/C Electrocatalysts for Water-Balance Stabilization in a Proton Exchange Membrane Fuel Cell. Nanobiotechnology Rep. 2022, 17, 320–327. [Google Scholar] [CrossRef]
- Wang, Y.; Diaz, D.F.R.; Chen, K.S.; Wang, Z.; Adroher, X.C. Materials, technological status, and fundamentals of PEM fuel cells—A review. Mater. Today 2020, 32, 178–203. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Koutahzadeh, N. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. SePurif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Prykhodko, Y.; Fatyeyeva, K.; Hespel, L.; Marais, S. Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application. Chem. Eng. J. 2021, 409, 127329. [Google Scholar] [CrossRef]
- Mazzapioda, L.; Panero, S.; Navarra, M.A. Polymer electrolyte membranes based on nafion and a superacidic inorganic additive for fuel cell applications. Polymers 2019, 11, 914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensharapov, R.M.; Fateev, V.N. The Membranes with Modified Surface to Stabilize Water Balance of Fuel Cell under Low Humidity Conditions: A Model Study. Nanotechnologies Russ. 2020, 15, 363–369. [Google Scholar] [CrossRef]
- Vengatesan, S.; Kim, H.J.; Lee, S.Y.; Cho, E.; Ha, H.Y.; Oh, I.H.; Lim, T.H. High temperature operation of PEMFC: A novel approach using MEA with silica in catalyst layer. Int. J. Hydrogen Energy 2008, 33, 171–178. [Google Scholar] [CrossRef]
- Gierke, T.D.; Munn, G.E.; Wilson, F. The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J. Polym. Sci. Part B Polym. Phys. 1981, 19, 1687–1704. [Google Scholar] [CrossRef]
- Barbi, V.; Funari, S.S.; Gehrke, R.; Scharnagl, N.; Stribeck, N. Nanostructure of Nafion membrane material as a function of mechanical load studied by SAXS. Polymer 2003, 44, 4853–4861. [Google Scholar] [CrossRef]
- Tsao, C.S.; Chang, H.L.; Jeng, U.S.; Lin, J.M.; Lin, T.L. SAXS characterization of the Nafion membrane nanostructure modified by radiation cross-linkage. Polymer 2005, 46, 8430–8437. [Google Scholar] [CrossRef]
- Bordín, S.F.; Andrada, H.E.; Carreras, A.C.; Castellano, G.E.; Oliveira, R.G.; Josa, V.G. Nafion membrane channel structure studied by small-angle X-ray scattering and Monte Carlo simulations. Polymer 2018, 155, 58–63. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.S.; Carvalho, S.G.; da Silva, R.P.; Tavares, A.C.; Schade, U.; Puskar, L.; Matos, B.R. SAXS signature of the lamellar ordering of ionic domains of perfluorinated sulfonic-acid ionomers by electric and magnetic field-assisted casting. Phys. Chem. Chem. Phys. 2020, 22, 13764–13779. [Google Scholar] [CrossRef]
- Ren, X.; Gobrogge, E.; Beyer, F.L. States of water in recast Nafion® films. J. Membr. Sci. 2021, 637, 119645. [Google Scholar] [CrossRef]
- Shi, C.; Liu, T.; Chen, W.; Cui, F.; Liu, L.; Cai, Y.; Li, Y. Interaction, structure and tensile property of swollen Nafion® membranes. Polymer 2021, 213, 123224. [Google Scholar] [CrossRef]
- Elliott, J.A.; Wu, D.; Paddison, S.J.; Moore, R.B. A unified morphological description of Nafion membranes from SAXS and mesoscale simulations. Soft Matter 2011, 7, 6820–6827. [Google Scholar] [CrossRef]
- Gebel, G.; Lambard, J. Small-angle scattering study of water-swollen perfluorinated ionomer membranes. Macromolecules 1997, 30, 7914–7920. [Google Scholar] [CrossRef]
- Fujimura, M.; Hashimoto, T.; Kawai, H. Small-angle X-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum. Macromolecules 1982, 15, 136–144. [Google Scholar] [CrossRef]
- Schmidt-Rohr, K.; Chen, Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 2008, 7, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.S.; Zakharchenko, O.A.; Konarev, P.V.; Karmazikov, Y.V.; Smirnov, M.A.; Zabelin, A.V.; Kovalchuk, M.V. The small-angle X-ray scattering beamline BioMUR at the Kurchatov synchrotron radiation source. Nucl. Instrum. Methods Phys. Res. A 2019, 945, 162616. [Google Scholar] [CrossRef]
- Breßler, I.; Kohlbrecher, J.; Thünemann, A.F. SASfit: A tool for small-angle scattering data analysis using a library of analytical expressions. J. Appl. Crystallogr. 2015, 48, 1587–1598. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.J.; Sondergeld, K.; Mazurowski, M.; Gallei, M.; Rehahn, M.; Spehr, T.; Stühn, B. Synthesis and characterization of polystyrene chains on the surface of silica nanoparticles: Comparison of SANS, SAXS, and DLS results. Colloid. Polym. Sci. 2013, 291, 2087–2099. [Google Scholar] [CrossRef]
- Ling, X.; Bonn, M.; Parekh, S.H.; Domke, K.F. Nanoscale distribution of sulfonic acid groups determines structure and binding of water in Nafion membranes. Angew. Chem. 2016, 128, 4079–4083. [Google Scholar] [CrossRef]
- Li, Z.; Hao, X.; Cheng, G.; Huang, S.; Han, D.; Xiao, M.; Meng, Y. In situ implantation of cross-linked functional POSS blocks in Nafion® for high performance direct methanol fuel cells. J. Membr. Sci. 2021, 640, 119798. [Google Scholar] [CrossRef]
- Dougherty, A.J.; Bartholet, Z.T.; Chumsky, R.J.; Delano, K.C.; Huang, X.; Morris, D.K. The Liquidus Temperature for Methanol-Water Mixtures at High Pressure and Low Temperature, with Application to Titan. J. Geophys. Res. 2018, 123, 3080–3087. [Google Scholar] [CrossRef]
- Li, J.; Tang, H.; Wang, Z.; Pan, M. Microstructure evolution of Nafion/silica membrane under humidity conditions. J. Power Sources 2013, 234, 333–339. [Google Scholar] [CrossRef]
Model Parameters | Value |
---|---|
Rwc | <3 nm |
h | <1 nm |
a | ~4 nm |
SLD of water | 9.412 × 1010 cm−2 |
SLD of sulfonic groups and side chains | 16.147 × 1010 cm−2 |
SLD of perfluorinated polymer matrix | 15.443 × 1010 cm−2 |
SLD of methanol | 9.566 × 1010 cm−2 |
SLD of SiO2 | 15.870 × 1010 cm−2 |
Membrane | Rwc, nm | σR | h, nm | a, nm |
---|---|---|---|---|
Nafion® 212 | 2.64 | 0.48 | 0.7 | 3.8 |
Nafion® 117 [37] | 2.44 | 0.25 | – | 4.7 |
Nafion® 212 [45] | 2.42 | – | 0.7–1.2 | 3.8 |
Nafion® 212 [49] | 2.30 | – | 0.3 | – |
Nafion® 212 [50] | 2.10 | – | – | – |
Membrane | Rwc, nm | σR |
---|---|---|
Before F/T cycles | 2.64 | 0.48 |
After 15 F/T cycles | 2.41 | 0.47 |
After 30 F/T cycles | 2.36 | 0.47 |
Membrane | Rwc, nm | σR |
---|---|---|
Water before F/T cycles | 2.64 | 0.48 |
Water-methanol after 30 F/T cycles | 2.65 | 0.47 |
Membrane | Rwc, nm | σR |
---|---|---|
Initial before F/T cycles | 2.64 | 0.48 |
Silica-modified before F/T cycles | 2.44 | 0.47 |
Silica-modified after 30 F/T cycles | 2.55 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mensharapov, R.M.; Ivanova, N.A.; Spasov, D.D.; Grigoriev, S.A.; Fateev, V.N. SAXS Investigation of the Effect of Freeze/Thaw Cycles on the Nanostructure of Nafion® Membranes. Polymers 2022, 14, 4395. https://doi.org/10.3390/polym14204395
Mensharapov RM, Ivanova NA, Spasov DD, Grigoriev SA, Fateev VN. SAXS Investigation of the Effect of Freeze/Thaw Cycles on the Nanostructure of Nafion® Membranes. Polymers. 2022; 14(20):4395. https://doi.org/10.3390/polym14204395
Chicago/Turabian StyleMensharapov, Ruslan M., Nataliya A. Ivanova, Dmitry D. Spasov, Sergey A. Grigoriev, and Vladimir N. Fateev. 2022. "SAXS Investigation of the Effect of Freeze/Thaw Cycles on the Nanostructure of Nafion® Membranes" Polymers 14, no. 20: 4395. https://doi.org/10.3390/polym14204395
APA StyleMensharapov, R. M., Ivanova, N. A., Spasov, D. D., Grigoriev, S. A., & Fateev, V. N. (2022). SAXS Investigation of the Effect of Freeze/Thaw Cycles on the Nanostructure of Nafion® Membranes. Polymers, 14(20), 4395. https://doi.org/10.3390/polym14204395