Microscopic, Spectroscopic, and Electrochemical Characterization of Novel Semicrystalline Poly(3-hexylthiophene)-Based Dendritic Star Copolymer
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis
2.1.1. Generation 1 Poly(propylene Thiophenoimine) (G1PPT)
2.1.2. Oxidative Copolymerization of G1PPT to 3-Hexylthiophene (3-HT)
2.1.3. Preparation of Poly[N,N’-bis(dodecyl)perylene-3,4,9,10-tetracarboxylic Diimide-1,7-diyl-alt-9-(heptadecane-9-yl)carbazole-2,7-diyl], (PDI-co-Carbazole)
2.2. Instrumentation
2.3. Thin Films and Device Fabrication
3. Results and Discussion
3.1. Material Characterization
3.1.1. Structural Characterization
3.1.2. Morphological and Particle Size Investigation
3.1.3. Optical and Photo-Physical Characterization
3.1.4. Electrochemical Characterization
3.2. Bulk Heterojunction Blends and Photovoltaic Performances
3.2.1. Optical and Photo-Physical Investigation of G1PPT-co-P3HT:PDI-co-Carbazole Blends
3.2.2. I-V Curve Characteristics and Morphology–Device Performance Relationship: Preliminary Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yonkeu, A.L.D. Dendritic Poly(3-hexylthiophene) Star Copolymer Systems for Next Generation Bulk Heterojunction Organic Photovoltaic Cells. Ph.D. Thesis, University of the Western Cape, Cape Town, South Africa, 2019. [Google Scholar]
- Boudreault, P.L.T.; Najari, A.; Leclerc, M. Processable low-bandgap polymers for photovoltaic applications. Chem. Mater. 2011, 23, 456–469. [Google Scholar] [CrossRef]
- Mdluli, S.B.; Ramoroka, M.E.; Yussuf, S.T.; Modibane, K.D.; John-Denk, V.S.; Iwuoha, E.I. π-Conjugated polymers and their application in organic and hybrid organic-silicon solar cells. Polymers 2022, 14, 716. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Bäuerle, P. Small molecule organic semiconductors on the move: Promises for future solar energy technology. Angew. Chem.-Int. Ed. 2012, 51, 2020–2067. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868–5923. [Google Scholar] [CrossRef]
- Persano, L.; Camposeo, A.; Pisignano, D. Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Prog. Polym. Sci. 2015, 43, 48–95. [Google Scholar] [CrossRef]
- Ogawa, S. Organic Electronics Materials and Devices; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Schulz, G.L.; Mastalerz, M.; Ma, C.Q.; Wienk, M.; Janssen, R.; Bäuerle, P. Synthesis and photovoltaic performance of pyrazinoquinoxaline containing conjugated thiophene-based dendrimers and polymers. Macromolecules 2013, 46, 2141–2151. [Google Scholar] [CrossRef] [Green Version]
- Tomalia, D.A. (Ed.) Dendrimers and Other Dendritic Polymers; Wiley Series in Polymer Science; Wiley: Hoboken, NJ, USA, 2001; Volume 1, pp. 1–471. [Google Scholar]
- Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010, 110, 1857–1959. [Google Scholar] [CrossRef]
- Kopidakis, N.; Mitchell, W.; Bozell, J. Bulk heterojunction organic photovoltaic devices using dendrimers. Available online: http://www.nrel.gov/docs/fy06osti/39051.pdf (accessed on 10 June 2022).
- Gupta, V.; Nayak, S.K. Dendrimers: A review on synthetic approaches. J. Appl. Pharm. Sci. 2015, 5, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Anthopoulos, T.D.; Markham, J.P.J.; Namdas, E.B.; Samuel, I.D.W.; Lo, S.-C.; Burn, P.L. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport. Appl. Phys. Lett. 2003, 82, 4824–4826. [Google Scholar] [CrossRef]
- Wang, J.L.; He, Z.; Wu, H.; Cui, H.; Li, Y.; Gong, Q.; Cao, Y.; Pei, J. Solution-processed bulk-heterojunction photovoltaic cells based on dendritic and star-shaped D-p-A organic dyes. Chem. Asian J. 2010, 5, 1455–1465. [Google Scholar] [CrossRef]
- Kopidakis, N.; Mitchell, W.J.; Van De Lagemaat, J.; Ginley, D.S.; Rumbles, G.; Shaheen, S.E.; Rance, W.L. Bulk heterojunction organic photovoltaic devices based on phenyl-cored thiophene dendrimers. Appl. Phys. Lett. 2006, 89, 103524. [Google Scholar] [CrossRef]
- Kline, R.J.; McGehee, M.D.; Kadnikova, E.N.; Liu, J.; Fréchet, J.M.J. Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv. Mater. 2003, 15, 1519–1522. [Google Scholar] [CrossRef]
- Schilinsky, P.; Asawapirom, U.; Scherf, U.; Biele, M.; Brabec, C.J. Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chem. Mater. 2005, 17, 2175–2180. [Google Scholar] [CrossRef]
- John, H.; Bauer, R.; Espindola, P.; Sonar, P.; Heinze, J.; Müllen, K. 3D-hybrid networks with controllable electrical conductivity from the electrochemical deposition of terthiophene-functionalized polyphenylene dendrimers. Angew. Chem.-Int. Ed. 2005, 44, 2447–2451. [Google Scholar] [CrossRef]
- Andreitchenko, E.V.; Clark, C.G.; Bauer, R.E.; Lieser, G.; Müllen, K. Pushing the synthetic limit: Polyphenylene dendrimers with “exploded” branching units-22-nm-diameter, monodisperse, stiff macromolecules. Angew. Chem.-Int. Ed. 2005, 44, 6348–6354. [Google Scholar] [CrossRef]
- Fernández-Lázaro, F.; Zink-Lorre, N.; Sastre-Santos, Á. Perylenediimides as non-fullerene acceptors in bulk-heterojunction solar cells (BHJSCs). J. Mater. Chem. A 2016, 4, 9336–9346. [Google Scholar] [CrossRef]
- Ondarse-Alvarez, D.; Oldani, N.; Roitberg, A.E.; Kleiman, V.; Tretiak, S.; Fernandez-Alberti, S. Energy transfer and spatial scrambling of an exciton in a conjugated dendrimer. Phys. Chem. Chem. Phys. 2018, 20, 29648–29660. [Google Scholar] [CrossRef]
- Itami, K.; Tonogaki, K.; Nokami, T.; Ohashi, Y.; Yoshida, J.I. Palladium-catalyzed convergent synthesis and properties of conjugated dendrimers based on triarylethene branching. Angew. Chem.-Int. Ed. 2006, 45, 2404–2409. [Google Scholar] [CrossRef]
- Chen, Z.; Jeffery, C.J.; Morshedi, M.; Moxey, G.J.; Barlow, A.; Yang, X.; Babgi, B.A.; Dalton, G.T.; Randles, M.D.; Smith, M.K.; et al. Syntheses, electrochemical, linear optical, and cubic nonlinear optical properties of ruthenium-alkynyl-oligo(phenylenevinylene) Stars. Chempluschem 2015, 80, 1329–1340. [Google Scholar] [CrossRef]
- Thongkasee, P.; Thangthong, A.; Janthasing, N.; Sudyoadsuk, T.; Namuangruk, S.; Keawin, T.; Jungsuttiwong, S.; Promarak, V. Carbazole-dendrimer-based donor-π-acceptor type organic dyes for dye-sensitized solar cells: Effect of the size of the carbazole dendritic donor. ACS Appl. Mater. Interfaces 2014, 6, 8212–8222. [Google Scholar] [CrossRef]
- Albrecht, K.; Matsuoka, K.; Fujita, K.; Yamamoto, K. Carbazole dendrimers as solution-processable thermally activated delayed-fluorescence materials. Angew. Chem.-Int. Ed. 2015, 54, 5677–5682. [Google Scholar] [CrossRef]
- Cho, Y.J.; Kim, S.Y.; Son, M.R.; Son, H.J.; Cho, D.W.; Kang, S.O. Time-resolved spectroscopic analysis of the light-energy harvesting mechanism in carbazole-dendrimers with a blue-phosphorescent Ir-complex core. Phys. Chem. Chem. Phys. 2017, 19, 20093–20100. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Wang, J.Y.; Ma, Y.; Cui, Y.X.; Zhou, Q.F.; Pei, J. Large rigid blue-emitting π-conjugated stilbenoid-based dendrimers: Synthesis and properties. Org. Lett. 2006, 8, 4287–4290. [Google Scholar] [CrossRef]
- Shi, K.; Wang, J.Y.; Pei, J. π-conjugated aromatics based on truxene: Synthesis, self-assembly, and applications. Chem. Rec. 2015, 15, 52–78. [Google Scholar] [CrossRef]
- Xia, C.; Fan, X.; Locklin, J.; Advincula, R.C.; Gies, A.; Nonidez, W. Characterization, supramolecular assembly, and nanostructures of thiophene dendrimers. J. Am. Chem. Soc. 2004, 126, 8735–8743. [Google Scholar] [CrossRef]
- Gao, W.; Wang, J.; Luo, Q.; Lin, Y.; Ma, Y.; Dou, J.; Tan, H.; Ma, C.Q.; Cui, Z. Tuning the optical and electrochemical properties of conjugated all-thiophene dendrimers via core functionalization with a benzothiadiazole unit. RSC Adv. 2017, 7, 1606–1616. [Google Scholar] [CrossRef] [Green Version]
- Stoltzfus, D.M.; Ma, C.Q.; Nagiri, R.C.R.; Clulow, A.J.; Bäuerle, P.; Burn, P.L.; Gentle, I.R.; Meredith, P. Thiophene dendrimer-based low donor content solar cells. Appl. Phys. Lett. 2016, 109, 103302. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.Q.; Fonrodona, M.; Schikora, M.C.; Wienk, M.M.; Janssen, R.A.J.; Bäuerle, P. Solution-processed bulk-heterojunction solar cells based on monodisperse dendritic oligothiophenes. Adv. Funct. Mater. 2008, 18, 3323–3331. [Google Scholar] [CrossRef]
- Dang, M.T.; Hirsch, L.; Wantz, G. P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 2011, 23, 3597–3602. [Google Scholar] [CrossRef]
- Hrostea, L.; Girtan, M.; Mallet, R.; Leontie, L. Optical and Morphological Properties of P3HT and P3HT: PCBM Thin Films Used in Photovoltaic Applications. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012015. [Google Scholar] [CrossRef] [Green Version]
- Hauch, J.A.; Schilinsky, P.; Choulis, S.A.; Childers, R.; Biele, M.; Brabec, C.J. Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime. Sol. Energy Mater. Sol. Cells 2008, 92, 727–731. [Google Scholar] [CrossRef]
- Yonkeu, A.L.D.; Ndipingwi, M.M.; Ikpo, C.; Nwambaekwe, K.; Yussuf, S.; Tesfay, H.; Iwuoha, E. Photoluminescence quenching of a novel electroconductive poly(Propylene thiophenoimine)-co-poly(ethylenedioxy thiophene) star copolymer. Polymers 2020, 12, 2894. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Nishiwaki, N.; Saigo, K.; Sugimoto, R. Polymerization of 3-hexylthiophene with FeCl3 in aromatic solvents. Polym. Bull. 2015, 72, 1817–1826. [Google Scholar] [CrossRef] [Green Version]
- Zhou, E.; Cong, J.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto, K. All-polymer solar cells from perylene diimide based copolymers: Material design and phase separation control. Angew. Chem.-Int. Ed. 2011, 50, 2799–2803. [Google Scholar] [CrossRef]
- Wu, P.T.; Xin, H.; Kim, F.S.; Ren, G.; Jenekhe, S.A. Regioregular poly(3-pentylthiophene): Synthesis, self-assembly of nanowires, high-mobility field-effect transistors, and efficient photovoltaic cells. Macromolecules 2009, 42, 8817–8826. [Google Scholar] [CrossRef]
- Rudenko, A.E.; Wiley, C.A.; Stone, S.M.; Tannaci, J.F.; Thompson, B.C. Semi-random P3HT analogs via direct arylation polymerization. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 3691–3697. [Google Scholar] [CrossRef]
- Qu, S.; Yao, Q.; Shi, W.; Wang, L.; Chen, L. The influence of molecular configuration on the thermoelectrical properties of poly(3-hexylthiophene). J. Electron. Mater. 2016, 45, 1389–1396. [Google Scholar] [CrossRef]
- Yameen, B.; Zydziak, N.; Weidner, S.M.; Bruns, M.; Barner-Kowollik, C. Conducting polymer/SWCNTs modular hybrid materials via Diels-Alder ligation. Macromolecules 2013, 46, 2606–2615. [Google Scholar] [CrossRef]
- Makelane, H.R.; John, S.V.; Waryo, T.T.; Baleg, A.; Mayedwa, N.; Rassie, C.; Wilson, L.; Baker, P.; Iwuoha, E.I. AC voltammetric transductions and sensor application of a novel dendritic poly(propylene thiophenoimine)-co-poly(3-hexylthiophene) star co-polymer. Sens. Actuators B Chem. 2016, 227, 320–327. [Google Scholar] [CrossRef]
- Baleg, A.A.; Jahed, N.; Yonkeu, A.L.D.; Njomo, N.; Mbambisa, G.; Molapo, K.M.; Fuku, X.G.; Fomo, G.; Makelane, H.; Tsegaye, A.; et al. Impedimetry and microscopy of electrosynthetic poly(propylene imine)-co-polypyrrole conducting dendrimeric star copolymers. Electrochim. Acta 2014, 128, 448–457. [Google Scholar] [CrossRef]
- Ganesamoorthy, R.; Sathiyan, G.; Thangamuthu, R.; Sakthivel, P. Synthesis and characterization of bay substituted perylene diimide small molecule for organicsolar cell application. In Recent Trends in Materials Science and Applications; Springer: Berlin/Heidelberg, Germany, 2017; Volume 189, pp. 401–415. [Google Scholar]
- Makelane, H.R.; Tovide, O.; Sunday, C.E.; Waryo, T.; Iwuoha, E.I. Electrochemical interrogation of G3-poly(propylene thiophenoimine) dendritic star polymer in phenanthrene sensing. Sensors 2015, 15, 22343–22363. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Chen, Z.; Zhang, G.; McDowell, C.; Luo, P.; Jia, X.; Ford, M.J.; Wang, M.; Bazan, G.C.; Huang, F.; et al. Toward high efficiency polymer solar cells: Rearranging the backbone units into a readily accessible random tetrapolymer. Adv. Energy Mater. 2018, 8, 1701668. [Google Scholar] [CrossRef]
- Ndipingwi, M.M.; Ikpo, C.O.; Hlongwa, N.W.; Dywili, N.; Djoumessi Yonkeu, A.L.; Iwuoha, E.I. Crystal chemistry and lithium-ion intercalation properties of lithium manganese silicate cathode for aqueous rechargeable Li-ion batteries. J. Appl. Electrochem. 2019, 49, 465–474. [Google Scholar] [CrossRef]
- Lin, H.S.; Jeon, I.; Chen, Y.; Yang, X.Y.; Nakagawa, T.; Maruyama, S.; Manzhos, S.; Matsuo, Y. Highly selective and scalable fullerene-cation-mediated synthesis accessing cyclo[60]fullerenes with five-membered carbon ring and their application to perovskite solar cells. Chem. Mater. 2019, 31, 8432–8439. [Google Scholar] [CrossRef]
- Nielsen, C.B.; McCulloch, I. Recent advances in transistor performance of polythiophenes. Prog. Polym. Sci. 2013, 38, 2053–2069. [Google Scholar] [CrossRef]
- Heo, H.; Kim, H.; Lee, D.; Jang, S.; Ban, L.; Lim, B.; Lee, J.; Lee, Y. Regioregular D1-A-D2-A terpolymer with controlled thieno[3,4-b]thiophene orientation for high-efficiency polymer solar cells processed with nonhalogenated solvents. Macromolecules 2016, 49, 3328–3335. [Google Scholar] [CrossRef]
- Skompska, M.; Szkurlat, A. The influence of the structural defects and microscopic aggregation of poly(3-alkylthiophenes) on electrochemical and optical properties of the polymer films: Discussion of an origin of redox peaks in the cyclic voltammograms. Electrochim. Acta 2001, 46, 4007–4015. [Google Scholar] [CrossRef]
- Enengl, C.; Enengl, S.; Pluczyk, S.; Havlicek, M.; Lapkowski, M.; Neugebauer, H.; Ehrenfreund, E. Doping-induced absorption bands in P3HT: Polarons and bipolarons. ChemPhysChem 2016, 17, 3830. [Google Scholar] [CrossRef] [Green Version]
- Ratcliff, E.L.; Jenkins, J.L.; Nebesny, K.; Armstrong, N.R. Electrodeposited, “textured” poly(3-hexyl-thiophene) (e-P3HT) films for photovoltaic applications. Chem. Mater. 2008, 20, 5796–5806. [Google Scholar] [CrossRef]
- Meena, S.; Mohammad, T.; Dutta, V.; Jacob, J. Design and synthesis of N-substituted perylene diimide based low band gap polymers for organic solar cell applications. RSC Adv. 2018, 8, 30468–30480. [Google Scholar] [CrossRef] [Green Version]
- Kminek, I.; Vyprachticky, D.; Kriz, J.; Dybal, J.; Cimrova, V. Low-band gap copolymers containing thienothiadazole units: Synthesis, optical, and electrochemical properties. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 2743–2756. [Google Scholar] [CrossRef]
- Cimrová, V.; Výprachtický, D.; Kmínek, I.; Dzhabarov, V.; Pokorná, V. Photophysical and electrochemical properties of novel luminescent and photoconductive copolymers. ECS Trans. 2014, 58, 15–30. [Google Scholar] [CrossRef]
- Bouguerra, N.; Ruìšžička, A.; Ulbricht, C.; Enengl, C.; Enengl, S.; Pokorná, V.; Výprachtický, D.; Tordin, E.; Aitout, R.; Cimrová, V.; et al. Synthesis and photophysical and Eeectroluminescent properties of poly(1,4-phenylene-ethynylene)-alt-poly(1,4-phenylene-vinylene)s with various dissymmetric substitution of alkoxy side chains. Macromolecules 2016, 49, 455–464. [Google Scholar] [CrossRef] [Green Version]
- Vajiravelu, S.; Ramunas, L.; Juozas Vidas, G.; Valentas, G.; Vygintas, J.; Valiyaveettil, S. Effect of substituents on the electron transport properties of bay substituted perylene diimide derivatives. J. Mater. Chem. 2009, 19, 4268–4275. [Google Scholar] [CrossRef]
- Bruchlos, K.; Trefz, D.; Hamidi-Sakr, A.; Brinkmann, M.; Heinze, J.; Ruff, A.; Ludwigs, S. Poly(3-hexylthiophene) revisited–Influence of film deposition on the electrochemical behaviour and energy levels. Electrochim. Acta 2018, 269, 299–311. [Google Scholar] [CrossRef]
- Sajoto, T.; Prakash, S.; Li, H.; Risko, C.; Barlow, S.; Zhang, Q.; Cho, J.; Brédas, J.; Kippelen, B.; Marder, S.R. Synthesis and characterization of naphthalene diimide/diethynylbenzene copolymers. Polymer 2012, 53, 1072–1078. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Q.; Li, Z.; Pei, J.; Tian, W. Solution processable D–A small molecules for bulk-heterojunction solar cells. Energy Environ. Sci. 2010, 3, 1427. [Google Scholar] [CrossRef]
- Zhou, W.; Ping, S.; Zhao, B.; Jiang, P.; Deng, L.; Tan, S. Low band gap copolymers consisting of porphyrins, thiophenes, and 2,1,3-benzothiadiazole moieties for bulk heterojunction solar cells. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 2685–2692. [Google Scholar] [CrossRef]
- Ndipingwi, M.M.; Ikpo, C.O.; Hlongwa, N.W.; Myalo, Z.; Ross, N.; Masikini, M.; John, S.V.; Baker, P.G.; Roos, W.D.; Iwuoha, E.I. Orthorhombic nanostructured Li2MnSiO4/Al2O3 supercapatteryelectrode with efficient lithium-ion migratory pathway. Batter. Supercaps 2018, 1, 223–235. [Google Scholar] [CrossRef]
- Yuan, D.; Chen, J.; Tan, S.; Xia, N.; Liu, Y. Worm-like mesoporous carbon synthesized from metal–organic coordination polymers for supercapacitors. Electrochem. Commun. 2009, 11, 1191–1194. [Google Scholar] [CrossRef]
- John, S.V.; Mayedwa, N.; Ikpo, C.; Molefe, L.Y.; Ndipingwi, M.M.; Dywili, N.R.; Van Wyk, J.; Mapolie, S.F.; Baker, P.; Iwuoha, E. Photoluminescence quenching of poly(octylfluorenylbenzothiadiazole) luminophore by n-type cobalt(II) salicylaldimine metallodendrimer. Synth. Met. 2016, 220, 114–122. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, B.; Tajima, K.; Nakano, M.; Takimiya, K.; Tang, A.; Zhou, E. Comparison among perylene diimide (PDI), naphthalene diimide (NDI), and naphthodithiophene diimide (NDTI) based n-type polymers for all-polymer solar cells application. Macromolecules 2017, 50, 3179–3185. [Google Scholar] [CrossRef]
- Lu, S.; Niu, J.; Li, W.; Mao, J.; Jiang, J. Photophysics and morphology investigation based on perylenetetracarboxylate/polymer photovoltaic devices. Sol. Energy Mater. Sol. Cells 2007, 91, 261–265. [Google Scholar] [CrossRef]
- Berney, C.; Danuser, G. FRET or no FRET: A quantitative comparison. Biophys. J. 2003, 84, 3992–4010. [Google Scholar] [CrossRef] [Green Version]
- Fomo, G.; Achadu, O.J.; Nyokong, T. One-pot synthesis of graphene quantum dots–phthalocyanines supramolecular hybrid and the investigation of their photophysical properties. J. Mater. Sci. 2018, 53, 538–548. [Google Scholar] [CrossRef]
- Huo, E.F.; Zou, Y.; Sun, H.Q.; Bai, J.L.; Huang, Y.; Lu, Z.Y.; Liu, Y.; Jiang, Q.; Zhao, S.L. Synthesis and characterization of n-type conjugated copolymers bearing perylene diimide moieties. Polym. Bull. 2011, 67, 843–857. [Google Scholar] [CrossRef]
- Výprachtický, D.; Kmínek, I.; Pavlačková, P.; Cimrová, V. Syntheses of fluorene/carbazole-thienothiadiazole copolymers for organic photovoltaics. ECS Trans. 2011, 33, 111–118. [Google Scholar] [CrossRef]
- Shinde, N.K.; Dhoble, S.J.; Swart, C.H.; Park, K. Basic mechanisms of photoluminescence. In Phosphate Phosphors for Solid-State Lighthing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 41–59. [Google Scholar]
- Duan, C.; Willems, R.E.M.; Van Franeker, J.J.; Bruijnaers, B.J.; Wienk, M.M.; Janssen, R.A.J. Effect of side chain length on the charge transport, morphology, and photovoltaic performance of conjugated polymers in bulk heterojunction solar cells. J. Mater. Chem. A 2016, 4, 1855–1866. [Google Scholar] [CrossRef] [Green Version]
- Gu, K.L.; Zhou, Y.; Gu, X.; Yan, H.; Diao, Y.; Kurosawa, T.; Ganapathysubramanian, B.; Toney, M.F.; Bao, Z. Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing. Org. Electron. Phys. Mater. Appl. 2017, 40, 79–87. [Google Scholar] [CrossRef]
- Yang, X.; Loos, J. Toward high-performance polymer solar cells: The importance of morphology control. Macromolecules 2007, 40, 1353–1362. [Google Scholar] [CrossRef]
- Gaspar, H.; Figueira, F.; Pereira, L.; Mendes, A.; Viana, J.; Bernardo, G. Recent Developments in the Optimization of the Bulk Heterojunction Morphology of Polymer: Fullerene Solar Cells. Materials 2018, 11, 2560. [Google Scholar] [CrossRef] [Green Version]
- Assender, H.; Barkhouse, A. Photovoltaic Polymer Materials. In Photochemistry and Photophysics of Polymer Materials; Allen, N.S., Ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 271–307. [Google Scholar]
- Li, M.; An, C.; Pisula, W.; Müllen, K. Cyclopentadithiophene-benzothiadiazole donor-acceptor polymers as prototypical semiconductors for high-performance field-effect transistors. Acc. Chem. Res. 2018, 51, 1196–1205. [Google Scholar] [CrossRef] [Green Version]
- Winder, C. Sensitization of low bandgap polymer bulk heterojunction solar cells. Thin Solid Films 2002, 403–404, 373–379. [Google Scholar] [CrossRef]
Origin | Group Frequency (cm−1) | Vibrational Mode | ||
---|---|---|---|---|
G1PPT-co-P3HT | 3-HT | G1PPT | ||
C−H | 2954–2849 | 2967–2855 | 2961–2801 | −C-H stretching |
1473 | 1462 | 1432 | −C-H bending | |
692 | - | 703 | −C-H bending, (α-position to the ring) | |
C=C | 1638 | 1632, 1538 (weak) | 1632 | −C=C stretching |
C=N | 1731 | - | 1673 | −C=N-H stretching |
Eʹ/V. | Rs/Ω | Rct/kΩ | CPE/µF | Phase Angle/Degree |
---|---|---|---|---|
−1.162 | 289.7 | 42.67 | 0.92 | 70.1 |
−1.172 | 290.4 | 34.29 | 0.91 | 73.3 |
−1. 182 | 291.1 | 25.66 | 0.92 | 75.4 |
Active Layer | VOC (mV) | JSC (µA/cm2) | FF | PCE/ (1 × 10−3%) |
---|---|---|---|---|
P3HT:PDI-co-Carbazole (2: 1) | 180 | 62 | 0.26 | 3.0 × 101 |
G1PPT-co-P3HT: PC61BM (1:2) | 80 | 15 | 0.24 | 3.0 |
G1PPT-co-P3HT:PDI-co-Carbazole (2: 1) | 50 | 2.65 | 0.11 | 0.021 |
P3HT:PC61BM (2: 1) | 510 | 7.7 × 103 | 0.38 | 1.5 × 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djoumessi Yonkeu, A.L.; Ndipingwi, M.M.; Tovide, O.O.; Ramoroka, M.E.; Ikpo, C.; Iwuoha, E.I. Microscopic, Spectroscopic, and Electrochemical Characterization of Novel Semicrystalline Poly(3-hexylthiophene)-Based Dendritic Star Copolymer. Polymers 2022, 14, 4400. https://doi.org/10.3390/polym14204400
Djoumessi Yonkeu AL, Ndipingwi MM, Tovide OO, Ramoroka ME, Ikpo C, Iwuoha EI. Microscopic, Spectroscopic, and Electrochemical Characterization of Novel Semicrystalline Poly(3-hexylthiophene)-Based Dendritic Star Copolymer. Polymers. 2022; 14(20):4400. https://doi.org/10.3390/polym14204400
Chicago/Turabian StyleDjoumessi Yonkeu, Anne L., Miranda M. Ndipingwi, Oluwakemi O. Tovide, Morongwa E. Ramoroka, Chinwe Ikpo, and Emmanuel I. Iwuoha. 2022. "Microscopic, Spectroscopic, and Electrochemical Characterization of Novel Semicrystalline Poly(3-hexylthiophene)-Based Dendritic Star Copolymer" Polymers 14, no. 20: 4400. https://doi.org/10.3390/polym14204400
APA StyleDjoumessi Yonkeu, A. L., Ndipingwi, M. M., Tovide, O. O., Ramoroka, M. E., Ikpo, C., & Iwuoha, E. I. (2022). Microscopic, Spectroscopic, and Electrochemical Characterization of Novel Semicrystalline Poly(3-hexylthiophene)-Based Dendritic Star Copolymer. Polymers, 14(20), 4400. https://doi.org/10.3390/polym14204400