Synthesis of Functional Polyesters N-(2,3-epoxypropyl)-4,5,6,7-tetrahydroindole by Anionic Ring-Opening Polymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of N-(2,3-epoxypropyl)-4,5,6,7-tetrahydroindole
2.2.2. Synthesis of Ethylene Glycol Methylglycidyl Ether (EGMGE)
2.2.3. Anionic polymerization of N-(2,3-epoxypropyl)-4,5,6,7-tetrahydroindole (typical procedure)
2.2.4. Anionic copolymerization of EPTHI with EGMGE (typical procedure)
3. Results and Discussion
3.1. Anionic Ring-Opening Polymerization of EPTHI
3.2. Anionic Ring-Opening Copolymerization of EPTHI with EGMGE and EGVGE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhmedov, K.M.; Karimov, K.S.; Cherkashin, M.I. Method for the Manufacture of a Photocapacitor/Photocell; USSR Authors’ Certificate 1581101; State Committee for Inventions and Discoveries: Moscow, Russia, 1988. [Google Scholar]
- Akhmedov, K.M.; Karimov, K.S.; Shcherbakova, I.M.; Porshnev, Y.N.; Cherkashin, M.I. The synthesis and properties of N-(2,3-epoxypropyl)carbazoles and the oligomers based on them. Russ. Chem. Rev. 1990, 59, 425–439. [Google Scholar] [CrossRef]
- Lopatinsky, V.P.; Rovkina, N.M.; Sutyagin, V.M.; Popov, V.A. Advances in the synthesis of new organic materials. Izv. Tomsk. Politekh. Univ. 2000, 303, 244–249. [Google Scholar]
- Malinauskas, T.; Vilionskiene, I.; Grazulevicius, J.V.; Getautis, V.; Reina, J.A.; Sidaravicius, J. Synthesis and properties of new derivatives of poly[9-(2,3-epoxypropyl)carbazole]. Polym. Int. 2008, 57, 1159–1164. [Google Scholar] [CrossRef]
- Kas’yan, L.I.; Pal’chikov, V.A.; Bondarenko, Y.S. Five-membered oxaza heterocyclic compounds on the basis of epoxides and aziridines. Russ. J. Org. Chem. 2011, 47, 797–841. [Google Scholar] [CrossRef]
- Brocas, A.-L.; Mantzaridis, C.; Tunc, D.; Carlotti, S. Polyether synthesis: From activated or metal-free anionic ring-opening polymerization of epoxides to functionalization. Prog. Polym. Sci. 2013, 38, 845–873. [Google Scholar] [CrossRef]
- Figueroa-Valverde, L.; Francisco, D.C.; Maria, L.; Marcela, R.; Virginia, M.; Tomas, L.; Magdalena, A. Design and synthesis of two epoxide derivatives from 3-ethynylaniline. J. Heterocycl. Chem. 2021, 58, 1154–1163. [Google Scholar] [CrossRef]
- Czub, P.; Mazela, W.; Pielichowski, J. Epoxy-carbazole compositions. Part I. Compositions with 9-(2,3-epoxypropyl)carbazole. Polimery 2003, 48, 641–644. [Google Scholar] [CrossRef]
- Malov, I.E.; Shiganov, I.N. Features of Photopolymerizing Compositions for Stereolithography with Visible Lasers; Vestnik MGTU im. N.E. Baumana. Ser. “Mashinostroenie”; Bauman Moscow State Technical University: Moscow, Russia, 2012; pp. 91–98. Available online: http://engjournal.ru/search/keyword/920/page1.html (accessed on 1 October 2022).
- Gunaydin, O.; Toppare, L.; Yagci, Y.; Harabagiu, V.; Pintela, M.; Simionescu, B.C. Synthesis of conducting polysiloxane—Polypyrrole graft copolymers. Polym. Bull. 2002, 47, 501–508. [Google Scholar] [CrossRef]
- Bozgeyik, İ.; Şenel, M.; Çevik, E.; Abasıyanık, M.F. A novel thin film amperometric urea biosensor based on urease-immobilized on poly(N-glycidylpyrrole-co-pyrrole). Curr. Appl. Phys. 2011, 11, 1083–1088. [Google Scholar] [CrossRef]
- Şenel, M.; Bozgeyik, İ.; Çevik, E.; Fatih Abasıyanık, M. A novel amperometric galactose biosensor based on galactose oxidase-poly(N-glycidylpyrrole-co-pyrrole). Synth. Met. 2011, 161, 440–444. [Google Scholar] [CrossRef]
- Prozorova, G.F.; Ermakova, T.G.; Kuznetsova, N.P.; Pozdnyakov, A.S.; Ivanov, A.V.; Trofimov, B.A. Electrical conductivity of copolymers of 1-vinyl-1,2,4-triazole with N-vinyl-4,5,6,7-tetrahydroindole. Russ. Chem. Bull. 2015, 64, 2141–2144. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Mikhaleva, A.I. N-Vinylpyrroles; Nauka: Moscow, Russia, 1984. [Google Scholar]
- Lukevics, E.; Abele, E. Recent Advances in the Synthesis of Heterocycles from Oximes. Heterocycles 2000, 53, 2285. [Google Scholar] [CrossRef]
- Mikhaleva, A.I.; Schmidt, E.Y. Selected Methods for Synthesis and Modification of Heterocycles; Kartsev, V.G., Ed.; IBS Press: Moscow, Russia, 2002. [Google Scholar]
- Meyers, R.A. (Ed.) Encyclopedia of Physical Science and Technology; IBS Press: Moscow, Russia, 2001; ISBN 978-0-12-227410-7. [Google Scholar]
- Trofimov, B.A.; Mikhaleva, A.I.; Shmidt, E.Y.; Ryapolov, O.A.; Platonov, V.B. Method for Preparing 4,5,6,7-Tetrahydroindole. RU Patent 2297410, 20 April 2007. [Google Scholar]
- Rappoport, Z.; Liebman, J.F. (Eds.) The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; PATAI’S Chemistry of Functional Groups; Wiley: Hoboken, NJ, USA, 2008; ISBN 9780470512616. [Google Scholar]
- Wang, Z. Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; ISBN 9780470638859. [Google Scholar]
- Trofimov, B.A.; Mikhaleva, A.I.; Shmidt, E.Y.; Ryapolov, O.A.; Platonov, V.B. Method for Preparing 4,5,6,7-Etrahydroindole. RU Patent 2307830, 10 October 2007. [Google Scholar]
- Trofimov, B.A.; Mikhaleva, A.I.; Shmidt, E.Y.; Vasil’tsov, A.M.; Ivanov, A.V.; Protsuk, N.I.; Ryapolov, O.A. A new technology for the synthesis of 4,5,6,7-tetrahydroindole. Dokl. Chem. 2010, 435, 307–310. [Google Scholar] [CrossRef]
- Merkulov, V.V.; Ryapolov, O.A.; Mantler, S.N. Tetrahydroindole: Its industrial synthesis and ways of using. Fundam. Res. 2017, 3, 67–71. [Google Scholar]
- Gulcin, İ.; Petrova, O.V.; Taslimi, P.; Malysheva, S.F.; Schmidt, E.Y.; Sobenina, L.N.; Gusarova, N.K.; Trofimov, B.A.; Tuzun, B.; Farzaliyev, V.M.; et al. Synthesis, Characterization, Molecular Docking, Acetylcholinesterase and α-Glycosidase Inhibition Profiles of Nitrogen-Based Novel Heterocyclic Compounds. ChemistrySelect 2022, 7, e202200370. [Google Scholar] [CrossRef]
- Polozhentseva, I.A.; Koval’skaya, A.V.; Tsypyshev, D.O.; Lobov, A.N.; Nazarov, A.M.; Danilko, K.V.; Kataev, V.A. Synthesis and cytotoxity of some tetrahydroindole derivetives. Bashkir Chem. J. 2018, 25, 59. [Google Scholar] [CrossRef]
- Vonderscher, J.; De Chassey, B.; Meyniel-Schicklin, L.; Miege, F. Preparation of Pyrrole-Type Compounds for Treatment of Viral Infections and Cancer. WO2022117697 (A1) 9 June 2022. [Google Scholar]
- Zack, D.; Bannister, T.; Voykovsky, T.; Yang, Z.; Berlinicke, C. Compositions and Methods for Treatment of Neurodegenerative Disease. WO2011/119777 A2 24 November 2011. [Google Scholar]
- Afroz, S.; Afrose, F.; Alam, A.K.M.M.; Khan, R.A.; Alam, M.A. Synthesis and characterization of polyethylene oxide (PEO)—N,N-dimethylacrylamide (DMA) hydrogel by gamma radiation. Adv. Compos. Hybrid Mater. 2019, 2, 133–141. [Google Scholar] [CrossRef]
- Mahdy, A.; Helal, R.H.; Abdel Moneam, Y.K.; Senna, M.M.H. Electron beam radiation synthesis of hydrogel based on biodegradable starch/ poly(ethylene oxide) (ST/PEO) blend and its application in controlled release of parasitic worm’s drugs. J. Drug Deliv. Sci. Technol. 2022, 74, 103531. [Google Scholar] [CrossRef]
- Barteau, K.P.; Wolffs, M.; Lynd, N.A.; Fredrickson, G.H.; Kramer, E.J.; Hawker, C.J. Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries. Macromolecules 2013, 46, 8988–8994. [Google Scholar] [CrossRef]
- Syromyatnikov, V.G.; Paskal’, L.P.; Mashkin, O.A. Polymeric electrolytes for lithium chemical power sources. Russ. Chem. Rev. 1995, 64, 249–257. [Google Scholar] [CrossRef]
- Lynd, N.A.; Fredrickson, G.H.; Hawker, C.J.; Kramer, E.J.; Barteau, K. Polymer Electrolytes Based on Poly(glycidyl ether)s. US Patent 8911639-B2, 16 December 2014. [Google Scholar]
- Kulova, T.L.; Skundin, A.M. Polymer electrolytes for sodium-ion batteries. Electrochem. Energy 2018, 18, 26–47. [Google Scholar] [CrossRef]
- Markova, M.V.; Morozova, L.V.; Schmidt, E.Y.; Mikhaleva, A.I.; Protsuk, N.I.; Trofimov, B.A. An alkylation of 4,5,6,7-tetrahydroindole with chloromethyloxirane in the presence of alkaline metal hydroxides. Arkivoc 2008, 2009, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Trofimov, B.A. Heteroatomic Derivatives of Acetylene: New Polyfunctional Monomers, Reagents, and Intermediates; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Oudian, J. Fundamentals of Polymer Chemistry; Mir: Moscow, Russia, 1974. [Google Scholar]
- Entelis, S.G. Reactive oligomers and their distribution by the type of functionality. Soros Educ. J. 1996, 7, 59–66. [Google Scholar]
- Sutyagin, V.M.; Bondaletova, L.I. Chemistry and Physics of Polymers; TPU: Tomsk, Russia, 2005. [Google Scholar]
- Labbé, A.; Carlotti, S.; Deffieux, A.; Hirao, A. Controlled Polymerization of Glycidyl Methyl Ether Initiated by Onium Salt/Triisobutylaluminum and Investigation of the Polymer LCST. Macromol. Symp. 2007, 249–250, 392–397. [Google Scholar] [CrossRef]
Polymer | Catalyst, wt.% | T, °C | Yield, % |
---|---|---|---|
P1 | KOH, 2 | 50 | 2 |
P2 | KOH, 0.5 | 70 | 3 |
P3 | KOH, 1 | 70 | 5 |
P4 | KOH, 2 | 70 | 14 |
P5 | KOH, 0.5 | 90 | 4 |
P6 | KOH, 1 | 90 | 12 |
P7 | KOH, 2 | 90 | 61 |
P8 | Et3N, 2 | 70 | 30 |
Copolymer | Ratio of Monomers, mol.% | Yield, % | Content N, % | Composition of Copolymers, mol.% | Mn, kDa | Mw, kDa | Mw/Mn | ||
---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M1 | M2 | ||||||
EGMGE (M2) * | |||||||||
PM1 | 10 | 90 | 84 | 0.50 | 5 | 95 | 14.2 | 18.4 | 1.29 |
PM2 | 25 | 75 | 65 | 2.79 | 29 | 71 | 12.1 | 16.1 | 1.33 |
PM3 | 50 | 50 | 50 | 4.28 | 47 | 53 | 10.0 | 13.7 | 1.37 |
PM4 | 75 | 25 | 34 | 4.32 | 53 | 47 | 7.9 | 11.3 | 1.43 |
PM5 | 90 | 10 | 25 | 4.88 | 56 | 44 | 5.6 | 8.9 | 1.59 |
EGVGE (M2) ** | |||||||||
PV1 | 10 | 90 | 58 | 1.08 | 11 | 89 | 12.3 | 16.5 | 1.34 |
PV2 | 25 | 75 | 63 | 1.87 | 20 | 80 | 10.3 | 12.2 | 1.19 |
PV3 | 50 | 50 | 65 | 3.25 | 36 | 64 | 7.8 | 10.2 | 1.32 |
PV4 | 75 | 25 | 67 | 4.06 | 46 | 54 | 6.4 | 8.5 | 1.33 |
PV5 | 90 | 10 | 77 | 4.46 | 51 | 49 | 6.4 | 8.6 | 1.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markova, M.; Emel’yanov, A.; Tatarinova, I.; Pozdnyakov, A. Synthesis of Functional Polyesters N-(2,3-epoxypropyl)-4,5,6,7-tetrahydroindole by Anionic Ring-Opening Polymerization. Polymers 2022, 14, 4467. https://doi.org/10.3390/polym14204467
Markova M, Emel’yanov A, Tatarinova I, Pozdnyakov A. Synthesis of Functional Polyesters N-(2,3-epoxypropyl)-4,5,6,7-tetrahydroindole by Anionic Ring-Opening Polymerization. Polymers. 2022; 14(20):4467. https://doi.org/10.3390/polym14204467
Chicago/Turabian StyleMarkova, Marina, Artem Emel’yanov, Inna Tatarinova, and Alexander Pozdnyakov. 2022. "Synthesis of Functional Polyesters N-(2,3-epoxypropyl)-4,5,6,7-tetrahydroindole by Anionic Ring-Opening Polymerization" Polymers 14, no. 20: 4467. https://doi.org/10.3390/polym14204467
APA StyleMarkova, M., Emel’yanov, A., Tatarinova, I., & Pozdnyakov, A. (2022). Synthesis of Functional Polyesters N-(2,3-epoxypropyl)-4,5,6,7-tetrahydroindole by Anionic Ring-Opening Polymerization. Polymers, 14(20), 4467. https://doi.org/10.3390/polym14204467