Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Compounding
2.2. Vulcanization and Testing
2.2.1. Rheometric Properties
2.2.2. Vulcanization
2.2.3. Crosslink Density
2.2.4. Differential Scanning Calorimetry (DSC)
2.2.5. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.2.6. Thermogravimetric Analysis (TGA)
2.2.7. Scanning Electron Microscopy (SEM)
2.2.8. Hardness
2.2.9. Tensile Test
2.2.10. Self-Healing Protocol
3. Results and Discussion
3.1. Novel TPEs Reinforced with Alginate
3.1.1. Optimization of Processing Variables
3.1.2. Effects of the A and ZnO Contents
3.1.3. Mechanical Performance of TPEs Reinforced with A and ZnO
3.2. Effect of the Cation on the Reinforcement Effect of Alginates
Mechanical Performance of TPEs Reinforced with Na-A and Ca-A
3.3. Self-Healing Performance of Reinforced TPEs
Self-Healing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sphere. Los Plásticos Son Clave Para Alcanzar Los Objetivos de Desarrollo Sostenible (ODS) de Las Naciones Unidas Del Eje Medioambiental. Available online: https://www.sphere-spain.es/los-plasticos-son-clave-para-alcanzar-los-objetivos-de-desarrollo-sostenible-ods-de-las-naciones (accessed on 30 July 2022).
- Ikeda, Y.; Kato, A.; Kohjiya, S.; Nakajima, Y. Rubber Science: A Modern Approach; Springer: Singapore, 2018; pp. 1–220. [Google Scholar] [CrossRef]
- Araujo-Morera, J.; Verdejo, R.; López-Manchado, M.A.; Hernández Santana, M. Sustainable Mobility: The Route of Tires through the Circular Economy Model. Waste Manag. 2021, 126, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Asaro, L.; Gratton, M.; Seghar, S.; Aït Hocine, N. Recycling of Rubber Wastes by Devulcanization. Resour. Conserv. Recycl. 2018, 133, 250–262. [Google Scholar] [CrossRef]
- Piskorz, J.; Majerski, P.; Radlein, D.; Wik, T.; Scott, D.S. Recovery of Carbon Black from Scrap Rubber. Energy Fuels 1999, 13, 544–551. [Google Scholar] [CrossRef]
- Lonca, G.; Muggeo, R.; Imbeault-Tetreault, H.; Bernard, S.; Margni, M. Does Material Circularity Rhyme with Environmental Efficiency? Case Studies on Used Tires. J. Clean Prod. 2018, 183, 424–435. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Manzanares, R.V.; Araujo-Morera, J.; González, S.; Verdejo, R.; López-Manchado, M.Á.; Santana, M.H. Understanding the Molecular Dynamics of Dual Crosslinked Networks by Dielectric Spectroscopy. Polymers 2021, 13, 3234. [Google Scholar] [CrossRef]
- Aldhufairi, H.S.; Olatunbosun, O.A. Developments in Tyre Design for Lower Rolling Resistance: A State of the Art Review. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 1865–1882. [Google Scholar] [CrossRef]
- van Beilen, J.B.; Poirier, Y. Guayule and Russian Dandelion as Alternative Sources of Natural Rubber. Crit. Rev. Biotechnol. 2007, 27, 217–231. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Recycling Waste Tires into Ground Tire Rubber (Gtr)/Rubber Compounds: A Review. J. Compos. Sci. 2020, 4, 103. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Hernández Santana, M.; Verdejo, R.; López-Manchado, M.A. Design of Rubber Composites with Autonomous Self-Healing Capability. ACS Omega 2020, 5, 1902–1910. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G.O.; Andersson, H.M.; White, S.R.; Sottos, N.R.; Moore, J.S.; Braun, P.V. Self-Healing Polymers. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 1–33. ISBN 9781118633892. [Google Scholar]
- Yang, Y.; Ding, X.; Urban, M.W. Chemical and Physical Aspects of Self-Healing Materials. Prog. Polym. Sci. 2015, 49–50, 34–59. [Google Scholar] [CrossRef] [Green Version]
- Sattar, M.A.; Patnaik, A. Design Principles of Interfacial Dynamic Bonds in Self-Healing Materials: What Are the Parameters? Chem. Asian J. 2020, 15, 4215–4240. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Urban, M.W. Self-Healing Polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Terryn, S.; Langenbach, J.; Roels, E.; Brancart, J.; Bakkali-Hassani, C.; Poutrel, Q.A.; Georgopoulou, A.; George Thuruthel, T.; Safaei, A.; Ferrentino, P.; et al. A Review on Self-Healing Polymers for Soft Robotics. Mater. Today 2021, 47, 187–205. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.Á.; Hernández Santana, M. The Final Frontier of Sustainable Materials: Current Developments in Self-Healing Elastomers. Int. J. Mol. Sci. 2022, 23, 4757. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.A.; Hernández Santana, M. Evolution of Self-Healing Elastomers, from Extrinsic to Combined Intrinsic Mechanisms: A Review. Mater. Horiz. 2020, 7, 2882–2902. [Google Scholar] [CrossRef]
- Das, M.; Pal, S.; Naskar, K. Exploring Various Metal-Ligand Coordination Bond Formation in Elastomers: Mechanical Performance and Self-Healing Behavior. Express. Polym. Lett. 2020, 14, 860–880. [Google Scholar] [CrossRef]
- Mandal, S.; Simon, F.; Banerjee, S.S.; Tunnicliffe, L.B.; Nakason, C.; Das, C.; Das, M.; Naskar, K.; Wiessner, S.; Heinrich, G.; et al. Controlled Release of Metal Ion Cross-Linkers and Development of Self-Healable Epoxidized Natural Rubber. ACS Appl. Polym. Mater. 2021, 3, 1190–1202. [Google Scholar] [CrossRef]
- Huang, J.; Cao, L.; Yuan, D.; Chen, Y. Design of Novel Self-Healing Thermoplastic Vulcanizates Utilizing Thermal/Magnetic/Light-Triggered Shape Memory Effects. ACS Appl. Mater. Interfaces 2018, 10, 40996–41002. [Google Scholar] [CrossRef]
- Huang, J.; Gong, Z.; Peng, T.; Cao, L.; Chen, Y. Design of Thermoplastic Vulcanizates Induced by Metal-Ligand Coordination towards Enhanced Mechanical Properties and Shape Memory Behavior. Compos. Commun. 2020, 22, 100444. [Google Scholar] [CrossRef]
- Lai, S.M.; Liu, J.L.; Huang, Y.H. Preparation of Self-Healing Natural Rubber/Polycaprolactone (NR/PCL) Blends. J. Macromol. Sci. Part B Phys. 2020, 59, 587–607. [Google Scholar] [CrossRef]
- Huang, J.; Gong, Z.; Chen, Y. A Stretchable Elastomer with Recyclability and Shape Memory Assisted Self-Healing Capabilities Based on Dynamic Disulfide Bonds. Polymer 2022, 242, 124569. [Google Scholar] [CrossRef]
- Liang, P.; Yang, S.; Ouyang, X.; Hong, H.; Jiao, Y. Improvement in Mechanical Properties of NBR/AO60/MMT Composites by Surface Hydrogen Bond. Polym. Compos. 2020, 41, 2169–2180. [Google Scholar] [CrossRef]
- AlKhatib, H.S.; Taha, M.O.; Aiedeh, K.M.; Bustanji, Y.; Sweileh, B. Synthesis and in Vitro Behavior of Iron-Crosslinked N-Methyl and N-Benzyl Hydroxamated Derivatives of Alginic Acid as Controlled Release Carriers. Eur. Polym. J. 2006, 42, 2464–2474. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Wang, X.Z. Thermal Decomposition Analysis of Co2+ Content Alginic Acid Cross-Linked Structure for the Synthesis of Cobalt Oxides. Mater. Today Commun. 2021, 29, 102879. [Google Scholar] [CrossRef]
- Ibarra, L.; Alzorriz, M. Ionic Elastomers Based on Carboxylated Nitrile Rubber and Calcium Oxide. J. Appl. Polym. Sci. 2003, 87, 805–813. [Google Scholar] [CrossRef]
- González-Jiménez, A.; Malmierca, M.A.; Bernal-Ortega, P.; Posadas, P.; Pérez-Aparicio, R.; Marcos-Fernández, Á.; Mather, P.T.; Valentín, J.L. The Shape-Memory Effect in Ionic Elastomers: Fixation through Ionic Interactions. Soft Matter 2017, 13, 2983–2994. [Google Scholar] [CrossRef]
- Bornstein, D.; Pazur, R.J. The Sulfur Reversion Process in Natural Rubber in Terms of Crosslink Density and Crosslink Density Distribution. Polym. Test. 2020, 88, 106524. [Google Scholar] [CrossRef]
- Jacob, M.; Thomas, S.; Varughese, K.T. Mechanical Properties of Sisal/Oil Palm Hybrid Fiber Reinforced Natural Rubber Composites. Compos. Sci. Technol. 2004, 64, 955–965. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; ISBN 0470093072. [Google Scholar]
- Sabater i Serra, R.; Molina-Mateo, J.; Torregrosa-Cabanilles, C.; Andrio-Balado, A.; Dueñas, J.M.M.; Serrano-Aroca, Á. Bio-Nanocomposite Hydrogel Based on Zinc Alginate/Graphene Oxide: Morphology, Structural Conformation, Thermal Behavior/Degradation, and Dielectric Properties. Polymers 2020, 12, 702. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Egg-Box Model-Based Gelation of Alginate and Pectin: A Review. Carbohydr. Polym. 2020, 242, 116389. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.M.; Pal, R.; Moon, G.Y. Characteristics of Sodium Alginate Membranes for the Pervaporation Dehydration of Ethanol–Water and Isopropanol–Water Mixtures. J. Membr. Sci. 1999, 160, 101–113. [Google Scholar] [CrossRef]
- Straccia, M.C.; D’Ayala, G.G.; Romano, I.; Laurienzo, P. Novel Zinc Alginate Hydrogels Prepared by Internal Setting Method with Intrinsic Antibacterial Activity. Carbohydr. Polym. 2015, 125, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Utrera-Barrios, S.; Araujo-Morera, J.; Pulido de Los Reyes, L.; Verdugo Manzanares, R.; Verdejo, R.; López-Manchado, M.Á.; Hernández Santana, M. An Effective and Sustainable Approach for Achieving Self-Healing in Nitrile Rubber. Eur. Polym. J. 2020, 139, 110032. [Google Scholar] [CrossRef]
- Araujo-Morera, J.; Utrera-Barrios, S.; Olivares, R.D.; Verdugo Manzanares, R.; López-Manchado, M.Á.; Verdejo, R.; Hernández Santana, M. Solving the Dichotomy between Self-Healing and Mechanical Properties in Rubber Composites by Combining Reinforcing and Sustainable Fillers. Macromol. Mater. Eng. 2022, 307, 2200261. [Google Scholar] [CrossRef]
- Xie, Z.; Hu, B.L.; Li, R.W.; Zhang, Q. Hydrogen Bonding in Self-Healing Elastomers. ACS Omega 2021, 6, 9319–9333. [Google Scholar] [CrossRef]
- Wemyss, A.M.; Bowen, C.; Plesse, C.; Vancaeyzeele, C.; Nguyen, G.T.M.; Vidal, F.; Wan, C. Dynamic Crosslinked Rubbers for a Green Future: A Material Perspective. Mater. Sci. Eng. R Rep. 2020, 141, 100561. [Google Scholar] [CrossRef]
- Tierney, N.K.; Register, R.A. Ion Hopping in Ethylene-Methacrylic Acid Ionomer Melts as Probed by Rheometry and Cation Diffusion Measurements. Macromolecules 2002, 35, 2358–2364. [Google Scholar] [CrossRef]
- Miwa, Y.; Kurachi, J.; Sugino, Y.; Udagawa, T.; Kutsumizu, S. Toward Strong Self-Healing Polyisoprene Elastomers with Dynamic Ionic Crosslinks. Soft Matter 2020, 16, 3384–3394. [Google Scholar] [CrossRef]
Ingredients | A0 | A10 | A10Z2 | A10Z3 | A10Z5 |
---|---|---|---|---|---|
ENR 25 | 100 | 100 | 100 | 100 | 100 |
PCL | 42.86 | 42.86 | 42.86 | 42.86 | 42.86 |
A | 0 | 10 | 10 | 10 | 10 |
ZnO | 0 | 0 | 2 | 3 | 5 |
DCP | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Ingredients | A0Z5 | A2.5Z5 | A5Z5 | A10Z5 |
---|---|---|---|---|
ENR 25 | 100 | 100 | 100 | 100 |
PCL | 42.86 | 42.86 | 42.86 | 42.86 |
A | 0 | 2.5 | 5 | 10 |
ZnO | 5 | 5 | 5 | 5 |
DCP | 0.8 | 0.8 | 0.8 | 0.8 |
Ingredients | X2.5 | X5 | X10 | X15 | X20 |
---|---|---|---|---|---|
ENR 25 | 100 | 100 | 100 | 100 | 100 |
PCL | 42.86 | 42.86 | 42.86 | 42.86 | 42.86 |
Na-A/Ca-A (X) | 2.5 | 5 | 10 | 15 | 20 |
DCP | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utrera-Barrios, S.; Ricciardi, O.; González, S.; Verdejo, R.; López-Manchado, M.Á.; Hernández Santana, M. Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates. Polymers 2022, 14, 4607. https://doi.org/10.3390/polym14214607
Utrera-Barrios S, Ricciardi O, González S, Verdejo R, López-Manchado MÁ, Hernández Santana M. Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates. Polymers. 2022; 14(21):4607. https://doi.org/10.3390/polym14214607
Chicago/Turabian StyleUtrera-Barrios, Saul, Ornella Ricciardi, Sergio González, Raquel Verdejo, Miguel Ángel López-Manchado, and Marianella Hernández Santana. 2022. "Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates" Polymers 14, no. 21: 4607. https://doi.org/10.3390/polym14214607
APA StyleUtrera-Barrios, S., Ricciardi, O., González, S., Verdejo, R., López-Manchado, M. Á., & Hernández Santana, M. (2022). Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates. Polymers, 14(21), 4607. https://doi.org/10.3390/polym14214607