New Hybrid Adsorbents Based on Polyaniline and Polypyrrole with Silicon Dioxide: Synthesis, Characterization, Kinetics, Equilibrium, and Thermodynamic Studies for the Removal of 2,4-Dichlorophenol
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Characterization Methods
2.3. PAni:PPy@SiO2 Hybrid Adsorbent Preparation
2.4. Batch Adsorption Experiments
3. Results and Discussion
3.1. Characterization Analysis
3.2. Adsorption Experiences
3.2.1. Effect of Key Factors
3.2.2. Adsorption Isotherms
3.3. Adsorption Thermodynamics
3.4. Adsorption Mechanism
3.5. Reusability of Adsorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, W.; Zhang, Y.; Luo, J.; Chen, L.; Guan, Y. Novel co-polymerization of polypyrrole/polyaniline on ferrate modified biochar composites for the efficient adsorption of hexavalent chromium in water. Chemosphere 2022, 303, 135254. [Google Scholar] [CrossRef]
- Khan, A.; Bhatti, H.N.; Tahira, M.; Alqahtani, F.O.; Al-Fawzan, F.F.; Alissa, S.A.; Iqbal, M. Na-alginate, polyaniline and polypyrrole composites with cellulosic biomass for the adsorptive removal of herbicide: Kinetics, equilibrium and thermodynamic studies. Arab. J. Chem. 2023, 16, 104399. [Google Scholar] [CrossRef]
- Bhatti, H.N.; Mahmood, Z.; Kausar, A.; Yakout, S.M.; Shair, O.H.; Iqbal, M. Biocomposites of polypyrrole, polyaniline and sodium alginate with cellulosic biomass: Adsorption-desorption, kinetics and thermodynamic studies for the removal of 2,4-dichlorophenol. Int. J. Biol. Macromol. 2020, 153, 146–157. [Google Scholar] [CrossRef]
- Weng, X.; Ma, H.; Owens, G.; Chen, Z. Enhanced removal of 2,4-dichlorophenol by Fe-Pd@ZIF-8 via adsorption and dechlorination. Sep. Purif. Technol. 2023, 305, 122371. [Google Scholar] [CrossRef]
- Elkady, M.F.; Hassan, H.S. Photocatalytic Degradation of Malachite Green Dye from Aqueous Solution Using Environmentally Compatible Ag/ZnO Polymeric Nanofibers. Polymers 2021, 13, 2033. [Google Scholar] [CrossRef]
- Tang, Y.; He, D.; Guo, Y.; Qu, W.; Shang, J.; Zhou, L.; Pan, R.; Dong, W. Electrochemical oxidative degradation of X-6G dye by boron-doped diamond anodes: Effect of operating parameters. Chemosphere 2020, 258, 127368. [Google Scholar] [CrossRef]
- Nawaz, H.; Umar, M.; Nawaz, I.; Ullah, A.; Khawar, M.T.; Nikiel, M.; Razzaq, H.; Siddiq, M.; Liu, X. Hybrid PVDF/PANI Membrane for Removal of Dyes from Textile Wastewater. Adv. Energy Mater. 2022, 24, 2100719. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Marchão, L.; Tavares, P.B.; Lucas, M.S.; Peres, J.A. Removal of Methylene Blue from Aqueous Solution by Application of Plant-Based Coagulants. Eng. Proc. 2022, 19, 38. [Google Scholar] [CrossRef]
- Benchikh, I.; Dahou, F.Z.; Lahreche, S.; Sabantina, L.; Benmimoun, Y.; Benyoucef, A. Development and characterisation of novel hybrid materials of modified ZnO-SiO2 and polyaniline for adsorption of organic dyes. Int. J. Environ. Anal. Chem. 2022, 1–20. [Google Scholar] [CrossRef]
- Srikhaow, A.; Chaengsawang, W.; Kiatsiriroat, T.; Kajitvichyanukul, P.; Smith, S.M. Adsorption Kinetics of Imidacloprid, Acetamiprid and Methomyl Pesticides in Aqueous Solution onto Eucalyptus Woodchip Derived Biochar. Minerals 2022, 12, 528. [Google Scholar] [CrossRef]
- Lv, H.W.; Jiang, H.L.; He, F.A.; Hu, Q.D.; Zhong, Z.R.; Yang, Y.Y. Adsorption of anionic and cationic dyes by a novel crosslinked cellulose-tetrafluoroterephthalonitrile-tannin polymer. Eur. Polym. J. 2022, 180, 111602. [Google Scholar] [CrossRef]
- German, N.; Ramanaviciene, A.; Ramanavicius, A. Formation of Polyaniline and Polypyrrole Nanocomposites with Embedded Glucose Oxidase and Gold Nanoparticles. Polymers 2019, 11, 377. [Google Scholar] [CrossRef]
- Gaikwad, P.D.; Shirale, D.J.; Gade, V.K.; Savale, P.A.; Kakde, K.P.; Kharat, H.J.; Shirsat, M.D. Potentiometric study of polyaniline film synthesized with various dopants and composite-dopant: A comparative study. Bull. Mater. Sci. 2006, 29, 417–420. [Google Scholar] [CrossRef]
- Luo, S.C. Conducting polymers as biointerfaces and biomaterials: A perspective for a special issue of polymer reviews. Polym. Rev. 2013, 53, 303–310. [Google Scholar] [CrossRef]
- Sharma, S.; Sudhakara, P.; Omran, A.A.B.; Singh, J.; Ilyas, A. Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications. Polymers 2021, 13, 2898. [Google Scholar] [CrossRef]
- Stejskal, J. Recent Advances in the Removal of Organic Dyes from Aqueous Media with Conducting Polymers, Polyaniline and Polypyrrole, and Their Composites. Polymers 2022, 14, 4243. [Google Scholar] [CrossRef]
- Belhadj, H.; Moulefera, I.; Sabantina, L.; Benyoucef, A. Effects of Incorporating Titanium Dioxide with Titanium Carbide on Hybrid Materials Reinforced with Polyaniline: Synthesis, Characterization, Electrochemical and Supercapacitive Properties. Fibers 2022, 10, 46. [Google Scholar] [CrossRef]
- Boutaleb, N.; Dahou, F.Z.; Djelad, H.; Sabantina, L.; Moulefera, I.; Benyoucef, A. Facile Synthesis and Electrochemical Characterization of Polyaniline@TiO2-CuO Ternary Composite as Electrodes for Supercapacitor Applications. Polymers 2022, 14, 4562. [Google Scholar] [CrossRef]
- Lahreche, S.; Moulefera, I.; El Kebir, A.; Sabantina, L.; Kaid, M.; Benyoucef, A. Application of Activated Carbon Adsorbents Prepared from Prickly Pear Fruit Seeds and a Conductive Polymer Matrix to Remove Congo Red from Aqueous Solutions. Fibers 2022, 1, 7. [Google Scholar] [CrossRef]
- Zhang, W.; Ou, J.; Tang, M.; He, Q.; Long, A.; Luo, S.; Sun, S.; Wan, J.; Gao, Y.; Zhou, L.; et al. Physically-crosslinked activated CaCO3/polyaniline-polypyrrole-modified GO/alginate hydrogel sorbent with highly efficient removal of copper(II) from aqueous solution. Chem. Eng. J. 2022, 431, 133375. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.-J. Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 2008, 61, 229–242. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H. Equilibrium, thermodynamics and mechanisms of Ni2+ biosorption by aerobic granules. Biochem. Eng. J. 2007, 35, 174–182. [Google Scholar] [CrossRef]
- Liu, H.; Ji, S.; Yang, H.; Zhang, H.; Tang, M. Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@Fe3O4 microspheres with enhanced mesoporous structure. Ultrason. Sonochem. 2014, 21, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Huang, W.; Qiu, B.; Hu, Q.; Cheng, X.; Guo, Z. Core-shell structured polyaniline/polypyrrole composites promoted methane production from anaerobic sludge. Chemosphere 2022, 287, 132296. [Google Scholar] [CrossRef]
- Marcelo, A.M.; Simoes, L.G.P.; Tremiliosi, G.C.; Coelho, D.; Minozzi, D.T.; Santos, R.I.; Vilela, D.C.B.; do Santos, J.R.; Ribeiro, L.K.; Rosa, I.L.V.; et al. SiO2-Ag Composite as a Highly Virucidal Material: A Roadmap that Rapidly Eliminates SARS-CoV-2. Nanomaterials 2021, 11, 638. [Google Scholar] [CrossRef]
- Hlekelele, L.; Nomadolo, N.E.; Setshedi, K.Z.; Mofokeng, L.E.; Avashnee Chetty, A.; Chauke, V.P. Synthesis and characterization of polyaniline, polypyrrole and zero-valent iron-based materials for the adsorptive and oxidative removal of bisphenol-A from aqueous solution. RSC Adv. 2019, 9, 14531. [Google Scholar] [CrossRef]
- Toumi, I.; Djelad, H.; Chouli, F.; Benyoucef, A. Synthesis of PANI@ZnO Hybrid Material and Evaluations in Adsorption of Congo Red and Methylene Blue Dyes: Structural Characterization and Adsorption Performance. J. Inorg. Organomet. Polym. Mater. 2022, 32, 112–121. [Google Scholar] [CrossRef]
- Gupta, S.P.; Nishad, H.H.; Chakane, S.D.; Gosavi, S.W.; Late, D.J.; Walke, P.S. Phase transformation in tungsten oxide nanoplates as a function of post-annealing temperature and its electrochemical influence on energy storage. Nanoscale Adv. 2020, 2, 4689–4701. [Google Scholar] [CrossRef]
- Gusev, G.I.; Gushchin, A.A.; Grinevich, V.A.; Fillipov, D.V.; Moskalenko, E.A.; Shil’ke, M.A. Adsorption of 2,4-Dichlorophenol and Phenol from Aqueous Solutions by Silicate Sorbent. Russ. J. Phys. Chem. 2021, 95, 389–394. [Google Scholar] [CrossRef]
- Mahjoubi, F.Z.; Khalidi, A.; Abdennouri, M.; Barka, N. M-Al-SO4 layered double hydroxides (M=Zn, Mg or Ni): Synthesis, characterization and textile dyes removal efficiency. Desalin. Water Treat. 2016, 57, 21564–21576. [Google Scholar] [CrossRef]
- Raoov, M.; Sharifah Mohamad, S.; Abas, M.R. Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: Characterization, adsorption isotherm, kinetic study, thermodynamics. J. Hazard. Mater. 2013, 263, 501–516. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.S.; Zheng, T.; Wang, P.; Jiang, J.P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 2010, 157, 348–356. [Google Scholar] [CrossRef]
- Noreen, S.; Bhatti, H.N.; Iqbal, M.; Hussain, F.; Sarim, F.M. Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. Int. J. Biol. Macromol. 2020, 147, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Qasem, K.M.A.; Khan, S.; Chinnam, S.; Saleh, H.A.M.; Mantasha, I.; Zeeshan, M.; Mane, Y.K.; Shahid, M. Sustainable fabrication of Co-MOF@CNT nano-composite for efficient adsorption and removal of organic dyes and selective sensing of Cr(VI) in aqueous phase. Mater. Chem. Phys. 2022, 291, 126748. [Google Scholar] [CrossRef]
- Hajjaoui, H.; Khnifira, M.; Soufi, A.; Abdennouri, M.; Kaya, S.; Akkaya, R.; Barka, N. Experimental, DFT and MD simulation studies of Mordant Black 11 dye adsorption onto polyaniline in aqueous solution. J. Mol. Liq. 2022, 364, 120045. [Google Scholar] [CrossRef]
- Jianming, P.J.; Zou, X.; Wang, X.; Guan, W.; Li, C.; Yan, Y.; Wu, X. Adsorptive removal of 2,4-didichlorophenol and 2,6-didichlorophenol from aqueous solution by cyclodextrin/attapulgite composites: Equilibrium, kinetics and thermodynamics. Chem. Eng. J. 2011, 166, 40–48. [Google Scholar] [CrossRef]
- Chai, X.; Zhao, Y. Adsorption of phenolic compound by aged-refuse. J. Hazard. Mater. 2006, 137, 410–417. [Google Scholar] [CrossRef]
- Crini, N.M.; Winterton, P.; Fourmentin, S.; Wilson, L.D.; Fenyvesi, E.; Crini, G. Water-insoluble β-cyclodextrin–epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Prog. Polym. Sci. 2018, 78, 1–23. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Binupriya, A.R.; Kavitha, D.; Yun, S.E. Kinetic and isothermal studies on liquid-phase adsorption of 2,4-dichlorophenol by palm pith carbon. Bioresour. Technol. 2007, 98, 866–873. [Google Scholar] [CrossRef]
- Edet, U.A.; Ifelebuegu, A.O. Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes 2020, 8, 665. [Google Scholar] [CrossRef]
Material | SBET/m2·g−1 | Pore Volume/cm3·g−1 | Average Pore Size nm |
---|---|---|---|
PAni | 43.18 ± 0.01 | 1.79 ± 0.01 | 28.64 ± 0.01 |
PAni:PPy | 38.41 ± 0.01 | 0.98 ± 0.01 | 22.82 ± 0.01 |
SiO2 | 182.02 ± 0.01 | 2.21 ± 0.01 | 37.55 ± 0.01 |
PAni:PPy@SiO2 | 113.84 ± 0.01 | 2.05 ± 0.01 | 30.14 ± 0.01 |
Models | Constants | PAni | PAni:PPy | PAni:PPy@SiO2 |
---|---|---|---|---|
PFO | (min−1) | 0.017 ± 0.02 | 0.020 ± 0.02 | 0.045 ± 0.02 |
(mg·g−1) | 5.59 ± 0.1 | 14.94 ± 0.1 | 19.91 ± 0.1 | |
RMSE | 1.82 ± 0.1 | 0.97 ± 0.1 | 1.31 ± 0.1 | |
R2 | 0.853 ± 0.02 | 0.939 ± 0.02 | 0.908 ± 0.02 | |
PSO | (mg·g−1) | 10.10 ± 0.1 | 17.34 ± 0.1 | 24.90 ± 0.1 |
(g·mg−1·min−1) | 0.177 ± 0.02 | 0.194 ± 0.02 | 0.118 ± 0.02 | |
(mg·g−1) | 9.95 ± 0.1 | 19.04 ± 0.1 | 26.08 ± 0.1 | |
RMSE | 0.28 ± 0.1 | 0.14 ± 0.1 | 0.11 ± 0.1 | |
R2 | 0.989 ± 0.02 | 0.990 ± 0.02 | 0.991 ± 0.02 | |
Intraparticle diffusion | (g·mg−1·min−1) | 2.734 ± 0.02 | 2.186 ± 0.02 | 1.642 ± 0.02 |
C (mg·g−1) | 1.839 ± 0.02 | 0.920 ± 0.02 | 2.933 ± 0.02 | |
RMSE | 2.55 ± 0.1 | 1.05 ± 0.1 | 1.93 ± 0.1 | |
R2 | 0.729 ± 0.02 | 0.941 ± 0.02 | 0.879 ± 0.02 |
Adsorbents | (mg·g−1) | pH | (mg·g−1) | Ref. |
---|---|---|---|---|
Native rice husk (BH) | 10.86 | 6.0 | 25 | [3] |
PAni/BH | 24.57 | 6.0 | 25 | [3] |
PPy/BH | 19.05 | 6.0 | 25 | [3] |
NaAlg/BH | 7.55 | 6.0 | 25 | [3] |
βCD-BIMOTs-TDI | 29.58 | 6.0 | 100 | [31] |
Activated carbon fiber | 2.25 | 6.0 | 0.8 | [33] |
β-Cyclodextrin/attapulgite composites | 19.04 | 8.0 | 100 | [37] |
Aged-refuse | 1.53 | 6.0 | 100 | [38] |
β-Cyclodextrin epichlorohydrin polymer | 15.7 | 7.0 | 98 | [39] |
γ-Cyclodextrin epichlorohydrin polymer | 9.8 | 7.0 | 98 | [39] |
Palm pith carbon | 19.16 | 2.0 | 20 | [40] |
PAni | 10.10 | 6.0 | 50 | This work |
PAni:PPy | 17.34 | 6.0 | 50 | This work |
PAni:PPy@SiO2 | 24.90 | 6.0 | 50 | This work |
Models | Constants | PAni | PAni:PPy | PAni:PPy@SiO2 |
---|---|---|---|---|
Langmuir | (mg·g−1) | 10.10 ± 0.1 | 17.34 ± 0.1 | 24.90± 0.1 |
(mg·g−1) | 8.85 ± 0.1 | 18.91 ± 0.1 | 26.08 ± 0.1 | |
(L·mg−1) | 0.237 ± 0.02 | 0.134 ± 0.02 | 0.843 ± 0.02 | |
0.448 ± 0.02 | 0.464 ± 0.02 | 0.083 ± 0.02 | ||
R2 | 0.993 ± 0.02 | 0.997 ± 0.02 | 0.994 ± 0.02 | |
Freundlich | (mg1−1/nL1/ng−1) | 32.53 ± 0.1 | 22.75 ± 0.1 | 36.29 ± 0.1 |
0.606 ± 0.02 | 0.524 ± 0.02 | 1.405 ± 0.02 | ||
R2 | 0.972 ± 0.02 | 0.975 ± 0.02 | 0.881 ± 0.02 | |
Temkin | (T·mol−1) | 2.544 ± 0.02 | 4.065 ± 0.02 | 29.86 ± 0.1 |
(L·g−1) | 40.64 ± 0.1 | 35.07 ± 0.1 | 73.86 ± 0.1 | |
R2 | 0.792 ± 0.02 | 0.784 ± 0.02 | 0.984 ± 0.02 | |
(mg·g−1) | 9.62 ± 0.1 | 18.04 ± 0.1 | 24.11 ± 0.1 | |
Sips | (L·g−1) | 0.009 ± 0.01 | 0.006± 0.01 | 0.004 ± 0.01 |
2.53 ± 0.1 | 3.56 ± 0. | 2.34 ± 0.1 | ||
R2 | 0.996 ± 0.01 | 0.998 ± 0.01 | 0.997 ± 0.01 | |
(L·g−1) | 162 ± 0.9 | 343 ± 0.9 | 203 ± 0.9 | |
Redlich–Peterson | (L·mg−1) | 177 ± 0.9 | 40.8 ± 0.5 | 20.5 ± 0.5 |
β | 0.95 ± 0.5 | 0.90 ± 0.5 | 0.94 ± 0.5 | |
R2 | 0.995 ± 0.02 | 0.997 ± 0.02 | 0.994 ± 0.02 |
Adsorbents | T (K) | (kJ·mol−1) | (kJ·mol−1) | (kJ·mol−1·K−1) | |
---|---|---|---|---|---|
PAni | 298 ± 0.5 | 0.48 ± 0.3 | −1.19 ± 0.2 | −7.15 ± 0.2 | −0.02 ± 0.2 |
308 ± 0.5 | 0.38 ± 0.2 | −0.99 ± 0.2 | |||
318 ± 0.3 | 0.29 ± 0.2 | −0.79 ± 0.2 | |||
328 ± 0.4 | 0.21 ± 0.5 | −0.59 ± 0.2 | |||
PAni:PPy | 298 ± 0.5 | 1.27 ± 0.5 | −3.14 ± 0.2 | −12.08 ± 0.2 | −0.03 ± 0.2 |
308 ± 0.4 | 1.11 ± 0.4 | −2.84 ± 0.2 | |||
318 ± 0.5 | 0.96 ± 0.4 | −2.54 ± 0.2 | |||
328 ± 0.4 | 0.82 ± 0.4 | −2.24 ± 0.2 | |||
PAni:PPy@SiO2 | 298 ± 0.4 | 4.57 ± 0.3 | −11.32 ± 0.2 | −94.76 ± 0.2 | −0.28 ± 0.2 |
308 ± 0.5 | 3.33 ± 0.5 | −8.52 ± 0.2 | |||
318 ± 0.3 | 2.16 ± 0.3 | −5.72 ± 0.2 | |||
328 ± 0.5 | 1.07 ± 0.3 | −2.92 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekhoukh, A.; Kiari, M.; Moulefera, I.; Sabantina, L.; Benyoucef, A. New Hybrid Adsorbents Based on Polyaniline and Polypyrrole with Silicon Dioxide: Synthesis, Characterization, Kinetics, Equilibrium, and Thermodynamic Studies for the Removal of 2,4-Dichlorophenol. Polymers 2023, 15, 2032. https://doi.org/10.3390/polym15092032
Bekhoukh A, Kiari M, Moulefera I, Sabantina L, Benyoucef A. New Hybrid Adsorbents Based on Polyaniline and Polypyrrole with Silicon Dioxide: Synthesis, Characterization, Kinetics, Equilibrium, and Thermodynamic Studies for the Removal of 2,4-Dichlorophenol. Polymers. 2023; 15(9):2032. https://doi.org/10.3390/polym15092032
Chicago/Turabian StyleBekhoukh, Amina, Mohamed Kiari, Imane Moulefera, Lilia Sabantina, and Abdelghani Benyoucef. 2023. "New Hybrid Adsorbents Based on Polyaniline and Polypyrrole with Silicon Dioxide: Synthesis, Characterization, Kinetics, Equilibrium, and Thermodynamic Studies for the Removal of 2,4-Dichlorophenol" Polymers 15, no. 9: 2032. https://doi.org/10.3390/polym15092032
APA StyleBekhoukh, A., Kiari, M., Moulefera, I., Sabantina, L., & Benyoucef, A. (2023). New Hybrid Adsorbents Based on Polyaniline and Polypyrrole with Silicon Dioxide: Synthesis, Characterization, Kinetics, Equilibrium, and Thermodynamic Studies for the Removal of 2,4-Dichlorophenol. Polymers, 15(9), 2032. https://doi.org/10.3390/polym15092032